1
|
Alvarez Herrera PA, Zheng F, Zhang P, Reitenbach J, Amenitsch H, Henschel C, Laschewsky A, Müller-Buschbaum P, Schulte A, Papadakis CM. Effect of pressure on the micellar structure and aggregation behavior of PMMA- b-PNIPAM diblock copolymers in a water/methanol mixture. SOFT MATTER 2025. [PMID: 40391595 DOI: 10.1039/d5sm00160a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
The pressure-induced changes of the micellar structures and aggregation behavior of a thermoresponsive diblock copolymer, consisting of a short poly(methyl methacrylate) (PMMA) and a long poly(N-isopropylacrylamide) (PNIPAM) block, in a 90 : 10 v/v water/methanol mixture, are characterized in the temperature-pressure frame. The phase diagram of the polymer solution is established by turbidimetry. The maximum of the coexistence line is found at 33.7 °C and 83.3 MPa. Synchrotron small-angle X-ray scattering is used to determine the micellar structure and correlation over a temperature and pressure range of 28 to 36 °C and 10 to 250 MPa, respectively. In the one-phase region, the core size steadily decreases with increasing pressure, while the micellar shell slightly shrinks after featuring an initial swelling up to ca. 75 MPa. The micellar swelling is attributed to the higher degree of hydration of the PNIPAM blocks due to the weakening of the preferential binding of methanol with PNIPAM. In the two-phase region, two pressure regimes are found: At pressures up to ca. 75 MPa (low-pressure regime), the core size and shell thickness increase while the correlation between micelles diminishes with increasing pressure. Conversely, at pressures between 75 and 250 MPa (high pressure regime), these parameters exhibit the opposite behavior. This behavior in the high-pressure regime of the two-phase region occurs regardless of whether the pressure is increased across the coexistence line or occurs entirely within the two-phase region.
Collapse
Affiliation(s)
- Pablo A Alvarez Herrera
- Technical University of Munich, TUM School of Natural Sciences, Physics Department, Soft Matter Physics Group, James-Franck-Str. 1, 85748 Garching, Germany.
| | - Feifei Zheng
- Technical University of Munich, TUM School of Natural Sciences, Physics Department, Soft Matter Physics Group, James-Franck-Str. 1, 85748 Garching, Germany.
| | - Peiran Zhang
- Technical University of Munich, TUM School of Natural Sciences, Physics Department, Soft Matter Physics Group, James-Franck-Str. 1, 85748 Garching, Germany.
| | - Julija Reitenbach
- Technical University of Munich, TUM School of Natural Sciences, Physics Department, Chair for Functional Materials, James-Franck-Str. 1, 85748 Garching, Germany
| | - Heinz Amenitsch
- Institute of Inorganic Chemistry, NAWI Graz, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Cristiane Henschel
- Universität Potsdam, Institut für Chemie, Karl-Liebknecht-Straße 24-25, 14476 Potsdam-Golm, Germany
| | - André Laschewsky
- Universität Potsdam, Institut für Chemie, Karl-Liebknecht-Straße 24-25, 14476 Potsdam-Golm, Germany
- Fraunhofer Institute for Applied Polymer Research, Geiselbergstraße 69, 14476 Potsdam-Golm, Germany
| | - Peter Müller-Buschbaum
- Technical University of Munich, TUM School of Natural Sciences, Physics Department, Chair for Functional Materials, James-Franck-Str. 1, 85748 Garching, Germany
| | - Alfons Schulte
- University of Central Florida, Department of Physics and College of Optics and Photonics, 4111 Libra Drive, Orlando, Florida 32816, USA
| | - Christine M Papadakis
- Technical University of Munich, TUM School of Natural Sciences, Physics Department, Soft Matter Physics Group, James-Franck-Str. 1, 85748 Garching, Germany.
| |
Collapse
|
2
|
Papadakis CM, Niebuur BJ, Schulte A. Thermoresponsive Polymers under Pressure with a Focus on Poly( N-isopropylacrylamide) (PNIPAM). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1-20. [PMID: 38149782 DOI: 10.1021/acs.langmuir.3c02398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Pressure is a key variable in the phase behavior of responsive polymers, both for applications and from a fundamental point of view. In this feature article, we review recent developments, particularly applications of neutron techniques such as small-angle neutron scattering (SANS) and quasi-elastic neutron scattering (QENS), across the temperature-pressure phase diagram. These are complemented by kinetic SANS experiments following pressure jumps. In the prototype system poly(N-isopropylacrylamide) (PNIPAM), QENS revealed the pressure-dependent characteristics of hydration water around the lower critical solution temperature transition. The size, water content, and inner structure of the mesoglobules formed in the two-phase region depend strongly on pressure, as shown by SANS. Beside these changes at the phase transition, the mesoglobule formation at low pressure is determined by kinetic factors, namely the formation of a polymer-rich, rigid shell, which hampers further growth by coalescence. At high pressure, in contrast, the growth proceeds by diffusion-limited coalescence without any kinetic hindrance. The disintegration of the mesoglobules evolves either via chain release from their surface or via swelling, depending on the osmotic pressure of the water. Moreover, we report on the profound influence of pressure on the cononsolvency effect. In the temperature-pressure frame, the one-phase region is hugely expanded upon the addition of the cosolvent methanol. SANS experiments unveil the enthalpic and entropic contributions to the effective Flory-Huggins interaction parameter between the segments and the solvent mixture. QENS experiments demonstrate an increase in polymer associated water with pressure, whereas methanol is released. Correspondingly, the solvent phase becomes enriched in methanol, providing a mechanism for the breakdown of cononsolvency at a high pressure. Finally, we outline future opportunities for high-pressure studies of thermoresponsive polymers, with a focus on neutron methods.
Collapse
Affiliation(s)
- Christine M Papadakis
- TUM School of Natural Sciences, Physics Department, Soft Matter Physics Group, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany
| | - Bart-Jan Niebuur
- TUM School of Natural Sciences, Physics Department, Soft Matter Physics Group, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany
| | - Alfons Schulte
- Department of Physics and College of Optics and Photonics, University of Central Florida, 4111 Libra Drive, Orlando, Florida 32816-2385, United States
| |
Collapse
|
3
|
Cononsolvency of the responsive polymer poly(N-isopropylacrylamide) in water/methanol mixtures: a dynamic light scattering study of the effect of pressure on the collective dynamics. Colloid Polym Sci 2022. [DOI: 10.1007/s00396-022-04987-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Abstract
The collective dynamics of 25 wt% poly(N-isopropylacrylamide) (PNIPAM) solutions in water or an 80:20 v/v water/methanol mixture are investigated in the one-phase region in dependence on pressure and temperature using dynamic light scattering. Throughout, two dynamic modes are observed, the fast one corresponding to the relaxation of the chain segments within the polymer blobs and the slow one to the relaxation of the blobs. A pressure scan in the one-phase region on an aqueous solution at 34.0 °C, i.e., slightly below the maximum of the coexistence line, reveals that the dynamic correlation length of the fast mode increases when the left and the right branch of the coexistence line are approached. Thus, the chains are rather swollen far away from the coexistence line, but contracted near the phase transition. Temperature scans of solutions in neat H2O or in H2O/CD3OD at 0.1, 130, and 200 MPa reveal that the dynamic correlation length of the fast mode shows critical behavior. However, the critical exponents are significantly larger than the value predicted by mean-field theory for the static correlation length, ν = 0.5, and the exponent is significantly larger for the solution in the H2O/CD3OD mixture than in neat H2O.
Collapse
|
4
|
Bharadwaj S, Niebuur BJ, Nothdurft K, Richtering W, van der Vegt NFA, Papadakis CM. Cononsolvency of thermoresponsive polymers: where we are now and where we are going. SOFT MATTER 2022; 18:2884-2909. [PMID: 35311857 DOI: 10.1039/d2sm00146b] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cononsolvency is an intriguing phenomenon where a polymer collapses in a mixture of good solvents. This cosolvent-induced modulation of the polymer solubility has been observed in solutions of several polymers and biomacromolecules, and finds application in areas such as hydrogel actuators, drug delivery, compound detection and catalysis. In the past decade, there has been a renewed interest in understanding the molecular mechanisms which drive cononsolvency with a predominant emphasis on its connection to the preferential adsorption of the cosolvent. Significant efforts have also been made to understand cononsolvency in complex systems such as micelles, block copolymers and thin films. In this review, we will discuss some of the recent developments from the experimental, simulation and theoretical fronts, and provide an outlook on the problems and challenges which are yet to be addressed.
Collapse
Affiliation(s)
- Swaminath Bharadwaj
- Technical University of Darmstadt, Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Computational Physical Chemistry Group, 64287 Darmstadt, Germany.
| | - Bart-Jan Niebuur
- Technical University of Munich, Physics Department, Soft Matter Physics Group, James-Franck-Str. 1, 85748 Garching, Germany
| | - Katja Nothdurft
- RWTH Aachen University, Institut für Physikalische Chemie, Landoltweg 2, 52056 Aachen, Germany, European Union
| | - Walter Richtering
- RWTH Aachen University, Institut für Physikalische Chemie, Landoltweg 2, 52056 Aachen, Germany, European Union
| | - Nico F A van der Vegt
- Technical University of Darmstadt, Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Computational Physical Chemistry Group, 64287 Darmstadt, Germany.
| | - Christine M Papadakis
- Technical University of Munich, Physics Department, Soft Matter Physics Group, James-Franck-Str. 1, 85748 Garching, Germany
| |
Collapse
|
5
|
Hofzumahaus C, Strauch C, Schneider S. Monte Carlo simulations of weak polyampholyte microgels: pH-dependence of conformation and ionization. SOFT MATTER 2021; 17:6029-6043. [PMID: 34076026 DOI: 10.1039/d1sm00433f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We performed Metropolis Monte Carlo simulations to investigate the impact of varying acid and base dissociation constants on the pH-dependent ionization and conformation of weak polyampholyte microgels under salt-free conditions and under explicit consideration of the chemical ionization equilibria of the acidic and basic groups and their electrostatic interaction. Irrespective of their relative acid and base dissociation constant, all of the microgels undergo a pH-dependent charge reversal from positive to negative with a neutral charge at the isoelectric point. This charge reversal is accompanied by a U-shaped swelling transition of the microgels with a minimum of their size at the point of charge neutrality. The width of the U-shaped swelling transition, however, is found to depend on the chosen relative acid and base dissociation constants through which the extent of the favorable electrostatic intramolecular interaction of the ionized acidic and basic groups is altered. The pH-dependent swelling transition of the microgels is found to become broader, the stronger the intramolecular electrostatic interaction of the oppositely charged ionized species is. In addition, the intramolecular charge compensation of the acidic and basic groups of the microgels allows their counterions to abandon the microgel and the associated gain in translational entropy further amplifies the broadening of the pH-dependent swelling transition. The analysis of the radial ionization profiles of the acidic and basic groups of the differently composed microgels reveals a variety of radial ionization patterns with a dependence on the overall charge of the microgels.
Collapse
Affiliation(s)
- C Hofzumahaus
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, D-52056 Aachen, Germany.
| | - C Strauch
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, D-52056 Aachen, Germany.
| | - S Schneider
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, D-52056 Aachen, Germany.
| |
Collapse
|
6
|
Niebuur BJ, Lohstroh W, Ko CH, Appavou MS, Schulte A, Papadakis CM. Pressure Dependence of Water Dynamics in Concentrated Aqueous Poly( N-isopropylacrylamide) Solutions with a Methanol Cosolvent. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bart-Jan Niebuur
- Physik-Department, Fachgebiet Physik weicher Materie, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | - Wiebke Lohstroh
- Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Lichtenbergstr. 1, 85748 Garching, Germany
| | - Chia-Hsin Ko
- Physik-Department, Fachgebiet Physik weicher Materie, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | - Marie-Sousai Appavou
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstr. 1, 85748 Garching, Germany
| | - Alfons Schulte
- Department of Physics and College of Optics and Photonics, University of Central Florida, 4111 Libra Drive, Orlando, Florida 32816-2385, United States
| | - Christine M. Papadakis
- Physik-Department, Fachgebiet Physik weicher Materie, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| |
Collapse
|
7
|
Niebuur BJ, Ko CH, Zhang X, Claude KL, Chiappisi L, Schulte A, Papadakis CM. Pressure Dependence of the Cononsolvency Effect in Aqueous Poly(N-isopropylacrylamide) Solutions: A SANS Study. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00489] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bart-Jan Niebuur
- Physik-Department, Fachgebiet Physik weicher Materie, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | - Chia-Hsin Ko
- Physik-Department, Fachgebiet Physik weicher Materie, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | - Xiaohan Zhang
- Physik-Department, Fachgebiet Physik weicher Materie, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | - Kora-Lee Claude
- Physik-Department, Fachgebiet Physik weicher Materie, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | - Leonardo Chiappisi
- Large Scale Structures Group, Institut Laue-Langevin, 71, Avenue des Martyrs, CS 20 156, 38042 Grenoble, France
- Stranski Laboratorium für Physikalische Chemie und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 124, Sekr. TC7, D-10623 Berlin, Germany
| | - Alfons Schulte
- Department of Physics and College of Optics and Photonics, University of Central Florida, 4111 Libra Drive, Orlando, Florida 32816, United States
| | - Christine M. Papadakis
- Physik-Department, Fachgebiet Physik weicher Materie, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| |
Collapse
|
8
|
Yong H, Merlitz H, Fery A, Sommer JU. Polymer Brushes and Gels in Competing Solvents: The Role of Different Interactions and Quantitative Predictions for Poly(N-isopropylacrylamide) in Alcohol–Water Mixtures. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00033] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Huaisong Yong
- Leibniz-Institut für Polymerforschung Dresden e.V., 01069 Dresden, Germany
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| | - Holger Merlitz
- Leibniz-Institut für Polymerforschung Dresden e.V., 01069 Dresden, Germany
| | - Andreas Fery
- Leibniz-Institut für Polymerforschung Dresden e.V., 01069 Dresden, Germany
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| | - Jens-Uwe Sommer
- Leibniz-Institut für Polymerforschung Dresden e.V., 01069 Dresden, Germany
- Institute for Theoretical Physics, Technische Universität Dresden, 01062 Dresden, Germany
| |
Collapse
|
9
|
Pérez-Ramírez HA, Haro-Pérez C, Vázquez-Contreras E, Klapp J, Bautista-Carbajal G, Odriozola G. P-NIPAM in water–acetone mixtures: experiments and simulations. Phys Chem Chem Phys 2019; 21:5106-5116. [DOI: 10.1039/c8cp07549b] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The lower critical solution temperature (LCST) of poly-N-isopropylacrylamide (p-NIPAM) diminishes when a small volume of acetone is added to the aqueous polymer solution, and then increases for further additions, producing a minimum at a certain acetone concentration.
Collapse
Affiliation(s)
- H. A. Pérez-Ramírez
- Área de Física de Procesos Irreversibles
- División de Ciencias Básicas e Ingeniería
- Universidad Autónoma Metropolitana-Azcapotzalco
- Av. San Pablo 180
- 02200 Ciudad de México
| | - C. Haro-Pérez
- Área de Física de Procesos Irreversibles
- División de Ciencias Básicas e Ingeniería
- Universidad Autónoma Metropolitana-Azcapotzalco
- Av. San Pablo 180
- 02200 Ciudad de México
| | - E. Vázquez-Contreras
- Departamento de Ciencias Naturales
- CNI
- Universidad Autónoma Metropolitana – Cuajimalpa
- Av. Vasco de Quiroga 4871
- 05348 Ciudad de México
| | - J. Klapp
- Instituto Nacional de Investigaciones Nucleares
- ININ
- Km. 36.5, Carretera México – Toluca
- 52750 Ocoyoacac
- Mexico
| | - G. Bautista-Carbajal
- Academia de Matemáticas
- Universidad Autónoma de la Ciudad de México
- 07160 Ciudad de México
- Mexico
| | - G. Odriozola
- Área de Física de Procesos Irreversibles
- División de Ciencias Básicas e Ingeniería
- Universidad Autónoma Metropolitana-Azcapotzalco
- Av. San Pablo 180
- 02200 Ciudad de México
| |
Collapse
|
10
|
Budkov YA, Kolesnikov AL. Models of the Conformational Behavior of Polymers in Mixed Solvents. POLYMER SCIENCE SERIES C 2018. [DOI: 10.1134/s1811238218020030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Budkov YA, Kiselev MG. Flory-type theories of polymer chains under different external stimuli. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:043001. [PMID: 29271365 DOI: 10.1088/1361-648x/aa9f56] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this Review, we present a critical analysis of various applications of the Flory-type theories to a theoretical description of the conformational behavior of single polymer chains in dilute polymer solutions under a few external stimuli. Different theoretical models of flexible polymer chains in the supercritical fluid are discussed and analysed. Different points of view on the conformational behavior of the polymer chain near the liquid-gas transition critical point of the solvent are presented. A theoretical description of the co-solvent-induced coil-globule transitions within the implicit-solvent-explicit-co-solvent models is discussed. Several explicit-solvent-explicit-co-solvent theoretical models of the coil-to-globule-to-coil transition of the polymer chain in a mixture of good solvents (co-nonsolvency) are analysed and compared with each other. Finally, a new theoretical model of the conformational behavior of the dielectric polymer chain under the external constant electric field in the dilute polymer solution with an explicit account for the many-body dipole correlations is discussed. The polymer chain collapse induced by many-body dipole correlations of monomers in the context of statistical thermodynamics of dielectric polymers is analysed.
Collapse
Affiliation(s)
- Yu A Budkov
- Tikhonov Moscow Institute of Electronics and Mathematics, School of Applied Mathematics, National Research University Higher School of Economics, Moscow, Russia. Laboratory of NMR Spectroscopy and Numerical Investigations of Liquids, G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Ivanovo, Russia
| | | |
Collapse
|
12
|
Ekkelenkamp AE, Elzes MR, Engbersen JFJ, Paulusse JMJ. Responsive crosslinked polymer nanogels for imaging and therapeutics delivery. J Mater Chem B 2018; 6:210-235. [PMID: 32254164 DOI: 10.1039/c7tb02239e] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Water-soluble, nano-sized crosslinked polymer networks, or nanogels, are delivery vehicles, which have highly interesting properties for therapeutic delivery and imaging. Nanogels may also possess responsive properties, depending on the employed polymers, allowing controlled release of therapeutics or image contrast generation upon exposure to physical or (bio)chemical cues. In this review, polymer nanogels are explored for application in imaging as well as for controlled drug and gene delivery. Moreover, nanogels are explored as responsive biomaterials and future applications are highlighted.
Collapse
Affiliation(s)
- Antonie E Ekkelenkamp
- Department of Biomolecular Nanotechnology, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, P. O. Box 217, 7500 AE, Enschede, The Netherlands.
| | | | | | | |
Collapse
|
13
|
Boyaci T, Orakdogen N. Multi-faced investigation for pH-sensitivity and solvent polarity in highly charged thermo-responsive hydro- and cryogels with strongly dissociated groups: A comparative evaluation of physico-chemical properties. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2017.11.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Budkov YA, Kolesnikov AL. Statistical description of co-nonsolvency suppression at high pressures. SOFT MATTER 2017; 13:8362-8367. [PMID: 29116278 DOI: 10.1039/c7sm01637a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We present an application of Flory-type theory of a flexible polymer chain dissolved in a binary mixture of solvents to theoretical description of co-nonsolvency. We show that our theoretical predictions are in good quantitative agreement with the recently published MD simulation results for the conformational behavior of a Lennard-Jones flexible chain in a binary mixture of the Lennard-Jones fluids. We show that our theory is able to describe co-nonsolvency suppression through pressure enhancement to extremely high values recently discovered in experiments and reproduced by full atomistic MD simulations. By analysing the co-solvent concentration in the internal polymer volume at different pressure values, we speculate that this phenomenon is caused by the suppression of the co-solvent preferential solvation of the polymer backbone at the rather high pressure imposed. We show that when the co-solvent-induced coil-globule transition takes place, the entropy and enthalpy contributions to the solvation free energy abruptly decrease, while the solvation free energy remains continuous.
Collapse
Affiliation(s)
- Yu A Budkov
- Tikhonov Moscow Institute of Electronics and Mathematics, School of Applied Mathematics, National Research University Higher School of Economics, Tallinskaya St. 34, 123458 Moscow, Russia.
| | | |
Collapse
|
15
|
de Oliveira TE, Mukherji D, Kremer K, Netz PA. Effects of stereochemistry and copolymerization on the LCST of PNIPAm. J Chem Phys 2017; 146:034904. [DOI: 10.1063/1.4974165] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Tiago E. de Oliveira
- Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Max-Planck Institut für Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany
| | - Debashish Mukherji
- Max-Planck Institut für Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany
| | - Kurt Kremer
- Max-Planck Institut für Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany
| | - Paulo A. Netz
- Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
16
|
Pica A, Graziano G. Hydrostatic pressure effect on PNIPAM cononsolvency in water-methanol solutions. Biophys Chem 2017; 231:34-38. [PMID: 28081859 DOI: 10.1016/j.bpc.2017.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 12/31/2016] [Accepted: 01/02/2017] [Indexed: 10/20/2022]
Abstract
When methanol is added to water at room temperature and 1atm, poly (N-isopropylacrylamide), PNIPAM, undergoes a coil-to-globule collapse transition. This intriguing phenomenon is called cononsolvency. Spectroscopic measurements have shown that application of high hydrostatic pressure destroys PNIPAM cononsolvency in water-methanol solutions. We have developed a theoretical approach that identifies the decrease in solvent-excluded volume effect as the driving force of PNIPAM collapse on increasing the temperature. The same approach indicates that cononsolvency, at room temperature and P=1atm, is caused by the inability of PNIPAM to make all the attractive energetic interactions that it could be engaged in, due to competition between water and methanol molecules. The present analysis suggests that high hydrostatic pressure destroys cononsolvency because the coil state becomes more compact, and the quantity measuring PNIPAM-solvent attractions increases in magnitude due to the solution density increase, and the ability of small water molecules to substitute methanol molecules on PNIPAM surface.
Collapse
Affiliation(s)
- Andrea Pica
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, 80126 Napoli, Italy
| | - Giuseppe Graziano
- Dipartimento di Scienze e Tecnologie, Università del Sannio, Via Port'Arsa 11, 82100 Benevento, Italy.
| |
Collapse
|
17
|
Wang H, Qian J, Ding F. Recent advances in engineered chitosan-based nanogels for biomedical applications. J Mater Chem B 2017; 5:6986-7007. [DOI: 10.1039/c7tb01624g] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent progress in the preparation and biomedical applications of engineered chitosan-based nanogels has been comprehensively reviewed.
Collapse
Affiliation(s)
- Hongxia Wang
- School of Printing and Packaging, Wuhan University
- Wuhan 430072
- P. R. China
| | - Jun Qian
- School of Printing and Packaging, Wuhan University
- Wuhan 430072
- P. R. China
| | - Fuyuan Ding
- School of Printing and Packaging, Wuhan University
- Wuhan 430072
- P. R. China
| |
Collapse
|
18
|
Rodríguez-Ropero F, Hajari T, van der Vegt NFA. Mechanism of Polymer Collapse in Miscible Good Solvents. J Phys Chem B 2015; 119:15780-8. [PMID: 26619003 DOI: 10.1021/acs.jpcb.5b10684] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We propose a physical mechanism for co-nonsolvency of a stimulus-responsive polymer in water/methanol mixed solution based on results obtained with molecular simulations. Even though the phenomenon is well known, the mechanism behind co-nonsolvency is still under debate. Herein, we study co-nonsolvency of poly(N-isopropylacrylamide) (PNiPAM) in methanol aqueous solutions, the most widely studied and experimentally well-characterized system. Our results show that at low alcohol content of the solution methanol preferentially binds to the PNiPAM globule and drives polymer collapse. The energetics of electrostatic, hydrogen bonding, or bridging-type interactions with the globule is found to play no role. Instead, preferential methanol binding results in a significant increase in the globule's configurational entropy, stabilizing methanol-enriched globular structures over wet globular structures in neat water. This mechanism drives the reduction of the lower critical solution temperature with increasing methanol content in the co-nonsolvency regime and eventually leads to polymer collapse. The globule-to-coil re-entrance at high methanol concentrations is instead driven by changes in solvent-excluded volume of the coil and globular states imparted by a decrease in solvent density with increasing methanol content of the solution: with increasing proportion of larger solvent particles (methanol), the entropic (cavity formation) cost of redistributing solvent molecules upon polymer re-entrance becomes smaller. This effect provides a natural explanation for the experimentally observed dependence of the re-entrance transition on chain molecular weight.
Collapse
Affiliation(s)
- Francisco Rodríguez-Ropero
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie and Center of Smart Interfaces, Technische Universität Darmstadt , Alarich-Weiss-Straße 10, 64287 Darmstadt, Germany
| | - Timir Hajari
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie and Center of Smart Interfaces, Technische Universität Darmstadt , Alarich-Weiss-Straße 10, 64287 Darmstadt, Germany
| | - Nico F A van der Vegt
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie and Center of Smart Interfaces, Technische Universität Darmstadt , Alarich-Weiss-Straße 10, 64287 Darmstadt, Germany
| |
Collapse
|
19
|
de Oliveira TE, Netz PA, Mukherji D, Kremer K. Why does high pressure destroy co-non-solvency of PNIPAm in aqueous methanol? SOFT MATTER 2015; 11:8599-8604. [PMID: 26381828 DOI: 10.1039/c5sm01772f] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
It is well known that poly(N-isopropylacrylamide) (PNIPAm) exhibits an interesting, yet puzzling, phenomenon of co-non-solvency. Co-non-solvency occurs when two competing good solvents for PNIPAm, such as water and alcohol, are mixed together. As a result, the same PNIPAm collapses within intermediate mixing ratios. This complex conformational transition is driven by preferential binding of methanol with PNIPAm. Interestingly, co-non-solvency can be destroyed when applying high hydrostatic pressures. In this work, using a large scale molecular dynamics simulation employing high pressures, we propose a microscopic picture behind the suppression of the co-non-solvency phenomenon. Based on thermodynamic and structural analysis, our results suggest that the preferential binding of methanol with PNIPAm gets partially lost at high pressures, making the background fluid reasonably homogeneous for the polymer. This is consistent with the hypothesis that the co-non-solvency phenomenon is driven by preferential binding and is not based on depletion effects.
Collapse
Affiliation(s)
- Tiago E de Oliveira
- Max-Planck Institut für Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany. and Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Paulo A Netz
- Max-Planck Institut für Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany. and Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Debashish Mukherji
- Max-Planck Institut für Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany.
| | - Kurt Kremer
- Max-Planck Institut für Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany.
| |
Collapse
|
20
|
Hofmann CH, Grobelny S, Panek PT, Heinen LKM, Wiegand AK, Plamper FA, Jacob CR, Winter R, Richtering W. Methanol-induced change of the mechanism of the temperature- and pressure-induced collapse of N
-Substituted acrylamide copolymers. ACTA ACUST UNITED AC 2015. [DOI: 10.1002/polb.23676] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Christian H. Hofmann
- Institute of Physical Chemistry, RWTH Aachen University; Landoltweg 2 52056 Aachen Germany
| | - Sebastian Grobelny
- Department of Chemistry and Chemical Biology; Physical Chemistry I, TU Dortmund University; Otto-Hahn-Straße 6 44227 Dortmund Germany
| | - Paweł T. Panek
- TU Braunschweig, Institute of Physical and Theoretical Chemistry; Hans-Sommer-Str. 10 38106 Braunschweig Germany
- Karlsruhe Institute of Technology (KIT), Institute of Physical Chemistry; Fritz-Haber-Weg 2 76131 Karlsruhe Germany
| | - Laura K. M. Heinen
- Institute of Physical Chemistry, RWTH Aachen University; Landoltweg 2 52056 Aachen Germany
| | - Ann-Kristin Wiegand
- Institute of Physical Chemistry, RWTH Aachen University; Landoltweg 2 52056 Aachen Germany
| | - Felix A. Plamper
- Institute of Physical Chemistry, RWTH Aachen University; Landoltweg 2 52056 Aachen Germany
| | - Christoph R. Jacob
- TU Braunschweig, Institute of Physical and Theoretical Chemistry; Hans-Sommer-Str. 10 38106 Braunschweig Germany
| | - Roland Winter
- Department of Chemistry and Chemical Biology; Physical Chemistry I, TU Dortmund University; Otto-Hahn-Straße 6 44227 Dortmund Germany
| | - Walter Richtering
- Institute of Physical Chemistry, RWTH Aachen University; Landoltweg 2 52056 Aachen Germany
| |
Collapse
|
21
|
Scherzinger C, Schwarz A, Bardow A, Leonhard K, Richtering W. Cononsolvency of poly-N-isopropyl acrylamide (PNIPAM): Microgels versus linear chains and macrogels. Curr Opin Colloid Interface Sci 2014. [DOI: 10.1016/j.cocis.2014.03.011] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|