1
|
Flanagan M, Gan Q, Sheth S, Schafer R, Ruesing S, Winter LE, Toth K, Zustiak SP, Montaño AM. Hydrogel Delivery Device for the In Vitro and In Vivo Sustained Release of Active rhGALNS Enzyme. Pharmaceuticals (Basel) 2023; 16:931. [PMID: 37513843 PMCID: PMC10384033 DOI: 10.3390/ph16070931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Morquio A disease is a genetic disorder resulting in N-acetylgalactosamine-6-sulfate sulfatase (GALNS) deficiency, and patients are currently treated with enzyme replacement therapy via weekly intravenous enzyme infusions. A means of sustained enzyme delivery could improve patient quality of life by reducing the administration time, frequency of hospital visits, and treatment cost. In this study, we investigated poly(ethylene-glycol) (PEG) hydrogels as a tunable, hydrolytically degradable drug delivery system for the encapsulation and sustained release of recombinant human GALNS (rhGALNS). We evaluated hydrogel formulations that optimized hydrogel gelation and degradation time while retaining rhGALNS activity and sustaining rhGALNS release. We observed the release of active rhGALNS for up to 28 days in vitro from the optimized formulation. rhGALNS activity was preserved in the hydrogel relative to buffer over the release window, and encapsulation was found to have no impact on the rhGALNS structure when measured by intrinsic fluorescence, circular dichroism, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). In vivo, we monitored the retention of fluorescently labeled rhGALNS in C57BL/6 albino mice when administered via subcutaneous injection and observed rhGALNS present for up to 20 days when delivered in a hydrogel versus 7 days in the buffer control. These results indicate that PEG hydrogels are suitable for the encapsulation, preservation, and sustained release of recombinant enzymes and may present an alternative method of delivering enzyme replacement therapies that improve patient quality of life.
Collapse
Affiliation(s)
- Michael Flanagan
- Department of Pediatrics, School of Medicine, Saint Louis University, St. Louis, MO 63104, USA
| | - Qi Gan
- Department of Pediatrics, School of Medicine, Saint Louis University, St. Louis, MO 63104, USA
| | - Saahil Sheth
- Department of Biomedical Engineering, Saint Louis University, St. Louis, MO 63103, USA
| | - Rachel Schafer
- School of Medicine, Saint Louis University, St. Louis, MO 63104, USA
| | - Samuel Ruesing
- Department of Biomedical Engineering, Saint Louis University, St. Louis, MO 63103, USA
| | - Linda E Winter
- Department of Pediatrics, School of Medicine, Saint Louis University, St. Louis, MO 63104, USA
| | - Karoly Toth
- Department of Microbiology and Molecular Immunology, School of Medicine, Saint Louis University, St. Louis, MO 63104, USA
| | - Silviya P Zustiak
- Department of Biomedical Engineering, Saint Louis University, St. Louis, MO 63103, USA
| | - Adriana M Montaño
- Department of Pediatrics, School of Medicine, Saint Louis University, St. Louis, MO 63104, USA
- Department of Biochemistry and Molecular Biology, School of Medicine, Saint Louis University, St. Louis, MO 63104, USA
| |
Collapse
|
2
|
Ishida T, Kitagaki R, Elakneswaran Y, Mizukado J, Shinzawa H, Sato H, Hagihara H, Watanabe R. Network Degradation Assessed by Evolved Gas Analysis–Mass Spectrometry Combined with Principal Component Analysis (EGA–MS–PCA): A Case of Thermo-Oxidized Epoxy/Amine Network. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Takato Ishida
- Department of Materials Physics, Nagoya University, Furo-cho, Chikusa, Nagoya464-8603, Japan
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba305-8565, Japan
| | - Ryoma Kitagaki
- Graduate School of Engineering, Hokkaido University, Nishi-8-chome, Kita-13-jyo, Kita-ku, Sapporo-shi, Hokkaido060-8628, Japan
| | - Yogarajah Elakneswaran
- Graduate School of Engineering, Hokkaido University, Nishi-8-chome, Kita-13-jyo, Kita-ku, Sapporo-shi, Hokkaido060-8628, Japan
| | - Junji Mizukado
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba305-8565, Japan
| | - Hideyuki Shinzawa
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba305-8565, Japan
| | - Hiroaki Sato
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba305-8565, Japan
| | - Hideaki Hagihara
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba305-8565, Japan
| | - Ryota Watanabe
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba305-8565, Japan
| |
Collapse
|
3
|
Mohammadi H, Morovati V, Korayem AE, Poshtan E, Dargazany R. Constitutive modeling of elastomers during photo- and thermo-oxidative aging. Polym Degrad Stab 2021. [DOI: 10.1016/j.polymdegradstab.2021.109663] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
4
|
Chebil MS, Bouaoulo G, Gerard P, Euch SEL, Issard H, Richaud E. Oxidation and unzipping in ELIUM resin: Kinetic model for mass loss. Polym Degrad Stab 2021. [DOI: 10.1016/j.polymdegradstab.2021.109523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Ishida T, Kitagaki R, Yamane S, Hagihara H. Temperature dependence of structural alteration by ultraviolet irradiation in acrylic-urethane coatings studied by positron annihilation spectroscopy and solvent swelling behavior. Polym Degrad Stab 2019. [DOI: 10.1016/j.polymdegradstab.2019.02.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
8
|
Mar BD, Kulik HJ. Depolymerization Pathways for Branching Lignin Spirodienone Units Revealed with ab Initio Steered Molecular Dynamics. J Phys Chem A 2017; 121:532-543. [PMID: 28005362 DOI: 10.1021/acs.jpca.6b11414] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Lignocellulosic biomass is an abundant, rich source of aromatic compounds, but direct utilization of raw lignin has been hampered by both the high heterogeneity and variability of linking bonds in this biopolymer. Ab initio steered molecular dynamics (AISMD) has emerged both as a fruitful direct computational screening approach to identify products that occur through mechanical depolymerization (i.e., in sonication or ball-milling) and as a sampling approach. By varying the direction of force and sampling over 750 AISMD trajectories, we identify numerous possible pathways through which lignin depolymerization may occur in pyrolysis or through catalytic depolymerization as well. Here, we present eight unique major depolymerization pathways discovered via AISMD for the recently characterized spirodienone lignin branching linkage that may comprise around 10% weight of all lignin in some softwoods. We extract representative trajectories from AISMD and carry out reaction pathway analysis to identify energetically favorable pathways for lignin depolymerization. Importantly, we identify dynamical effects that could not be observed through more traditional calculations of bond dissociation energies. Such effects include thermodynamically favorable recovery of aromaticity in the dienone ring that leads to near-barrierless subsequent ether cleavage and hydrogen-bonding effects that stabilize newly formed radicals. Some of the most stable spirodienone fragments that reside at most 1 eV above the reactant structure are formed with only 2 eV barriers for C-C bond cleavage, suggesting key targets for catalyst design to drive targeted depolymerization of lignin.
Collapse
Affiliation(s)
- Brendan D Mar
- Department of Chemical Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| |
Collapse
|
9
|
Mar BD, Qi HW, Liu F, Kulik HJ. Ab Initio Screening Approach for the Discovery of Lignin Polymer Breaking Pathways. J Phys Chem A 2015; 119:6551-62. [PMID: 26001164 DOI: 10.1021/acs.jpca.5b03503] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The directed depolymerization of lignin biopolymers is of utmost relevance for the valorization or commercialization of biomass fuels. We present a computational and theoretical screening approach to identify potential cleavage pathways and resulting fragments that are formed during depolymerization of lignin oligomers containing two to six monomers. We have developed a chemical discovery technique to identify the chemically relevant putative fragments in eight known polymeric linkage types of lignin. Obtaining these structures is a crucial precursor to the development of any further kinetic modeling. We have developed this approach by adapting steered molecular dynamics calculations under constant force and varying the points of applied force in the molecule to diversify the screening approach. Key observations include relationships between abundance and breaking frequency, the relative diversity of potential pathways for a given linkage, and the observation that readily cleaved bonds can destabilize adjacent bonds, causing subsequent automatic cleavage.
Collapse
Affiliation(s)
| | | | - Fang Liu
- §Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | | |
Collapse
|