1
|
Precision Polymer Synthesis by Controlled Radical Polymerization: Fusing the progress from Polymer Chemistry and Reaction Engineering. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101555] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
2
|
Tiwari N, Badiger MV, Rajamohanan PR, Ravindranathan S. Investigation of domain structures in
MPEG‐
b
‐PCL
grafted poly(acrylic acid) by
NMR
diffusion studies. POLYM INT 2022. [DOI: 10.1002/pi.6380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Neha Tiwari
- Faculty of Engineering Sciences and Bavarian Polymer Institute University of Bayreuth, Ludwig Thoma Str. 36 A 95447 Bayreuth Germany
| | - Manohar V. Badiger
- Polymer Science and Engineering Division CSIR‐National Chemical Laboratory Pune 411008 India
| | - P. R. Rajamohanan
- Central NMR Facility CSIR‐National Chemical Laboratory Pune 411008 India
| | | |
Collapse
|
3
|
Zhao Z, He Y, Meng X, Ye C. 3D-to-3D Microscale Shape-Morphing from Configurable Helices with Controlled Chirality. ACS APPLIED MATERIALS & INTERFACES 2021; 13:61723-61732. [PMID: 34913686 DOI: 10.1021/acsami.1c15711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Tunable and reconfigurable materials with autonomic shape transformation in response to the environment have emerged as one of the most promising approaches for a variety of biomedical applications, such as tissue engineering, biosensing, and in vivo biomedical devices. Currently, it is still quite challenging to fabricate soft, microscaled 3D shape-reconfigurable structures due to either complicated microfabrication or limited microscale photopolymerization-based printing approaches to enable adaptive shape transformation. Here, a one-step photo-cross-linking approach has been demonstrated to obtain a 3D-to-3D morphological transformable microhelix from a self-rolled hydrogel microsheet, resulting in chirality conversion. It was enabled by a custom-designed "hard" stripe/"soft" groove topography on the microsheets for introducing, which introduced both in-planar and out-of-planar anisotropies. Both experiment and simulation confirmed that a stripe/groove geometry can effectively control the 3D transformation by activating in-planar or/and out-of-planar mismatch stress within the microsheets, resulting in switching of the rolling direction between perpendicular/parallel to the length of the stripe. Furthermore, versatile 3D microconstructs with the ability to transform between two distinct 3D configurations have been achieved based on controlled rolling of microhelices, demonstrated as "windmill"-to-"T-cross" and "cylinder"-to-"scroll" transformations and dynamic blossoming of biomimetic orchids. In contrast to conventional 2D-to-3D micro-origami, we have successfully demonstrated an approach for fabricating microscale, all-soft-material-based constructs with autonomic 3D-to-3D structural transformation, which presents an opportunity for designing more complex hydrogel-based microrobotics.
Collapse
Affiliation(s)
- Zhenyu Zhao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
| | - Yisheng He
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
| | - Xiao Meng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
| | - Chunhong Ye
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
| |
Collapse
|
4
|
Park SC, Sharma G, Kim JC. Synthesis of temperature-responsive P(vinyl pyrrolidone-co-methyl methacrylate) micelle for controlled drug release. J DISPER SCI TECHNOL 2021. [DOI: 10.1080/01932691.2021.2001344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Soo Chan Park
- Department of Biomedical Science & Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Republic of Korea
| | - Garima Sharma
- Department of Biomedical Science & Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Republic of Korea
| | - Jin-Chul Kim
- Department of Biomedical Science & Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
5
|
Flemming P, Münch AS, Fery A, Uhlmann P. Constrained thermoresponsive polymers - new insights into fundamentals and applications. Beilstein J Org Chem 2021; 17:2123-2163. [PMID: 34476018 PMCID: PMC8381851 DOI: 10.3762/bjoc.17.138] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/10/2021] [Indexed: 12/15/2022] Open
Abstract
In the last decades, numerous stimuli-responsive polymers have been developed and investigated regarding their switching properties. In particular, thermoresponsive polymers, which form a miscibility gap with the ambient solvent with a lower or upper critical demixing point depending on the temperature, have been intensively studied in solution. For the application of such polymers in novel sensors, drug delivery systems or as multifunctional coatings, they typically have to be transferred into specific arrangements, such as micelles, polymer films or grafted nanoparticles. However, it turns out that the thermodynamic concept for the phase transition of free polymer chains fails, when thermoresponsive polymers are assembled into such sterically confined architectures. Whereas many published studies focus on synthetic aspects as well as individual applications of thermoresponsive polymers, the underlying structure-property relationships governing the thermoresponse of sterically constrained assemblies, are still poorly understood. Furthermore, the clear majority of publications deals with polymers that exhibit a lower critical solution temperature (LCST) behavior, with PNIPAAM as their main representative. In contrast, for polymer arrangements with an upper critical solution temperature (UCST), there is only limited knowledge about preparation, application and precise physical understanding of the phase transition. This review article provides an overview about the current knowledge of thermoresponsive polymers with limited mobility focusing on UCST behavior and the possibilities for influencing their thermoresponsive switching characteristics. It comprises star polymers, micelles as well as polymer chains grafted to flat substrates and particulate inorganic surfaces. The elaboration of the physicochemical interplay between the architecture of the polymer assembly and the resulting thermoresponsive switching behavior will be in the foreground of this consideration.
Collapse
Affiliation(s)
- Patricia Flemming
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
- Technische Universität Dresden, 01062 Dresden, Germany
| | - Alexander S Münch
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
| | - Andreas Fery
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
- Technische Universität Dresden, 01062 Dresden, Germany
| | - Petra Uhlmann
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
- University of Nebraska-Lincoln, NE 68588, Lincoln, USA
| |
Collapse
|
6
|
Kasprów M, Lipowska-Kur D, Otulakowski Ł, Dworak A, Trzebicka B. HEMA in Polymers with Thermoresponsive Properties. POLYM REV 2021. [DOI: 10.1080/15583724.2021.1896542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Maciej Kasprów
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
| | - Daria Lipowska-Kur
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
| | - Łukasz Otulakowski
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
| | - Andrzej Dworak
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
| | - Barbara Trzebicka
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
| |
Collapse
|
7
|
Sun F, Ren HT, Li TT, Huang SY, Zhang Y, Lou CW, Lin JH. Bioinspired design of underwater superoleophobic Poly(N-isopropylacrylamide)/ polyacrylonitrile/TiO 2 nanofibrous membranes for highly efficient oil/water separation and photocatalysis. ENVIRONMENTAL RESEARCH 2020; 186:109494. [PMID: 32302872 DOI: 10.1016/j.envres.2020.109494] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 03/26/2020] [Accepted: 04/04/2020] [Indexed: 06/11/2023]
Abstract
Inspired by fish scales, this study prepares a thermo-responsive underwater oleophobic PNIPAM/PAN/TiO2 nanofibrous membranes by traditional electrospinning technique using poly-N-isopropylacrylamide (PNIPAM) and polyacrylonitrile (PAN). Thermal properties, mechanical properties, surface chemical composition, wettability, photocatalysis, and oil/water separation of PNIPAM/PAN/TiO2 membrane are explored compared to pure PNIPAM membrane. Result reveals that PAN/TiO2 compounds make PNIPAM membrane with a smaller fiber diameter of 141 nm and high tensile stress of 7.4 MPa, and also decompose 98% of rhodamine B after UV light radiation. This bioinspired design structure endows the membrane with superhydrophilicity with a low water contact angle, and underwater superoleophobicity with a high oil contact angle of 157° (petroleum ether) and 151° (dichloromethane). This membrane can efficiency separate oil/water mixture with a high separation efficiency. Moreover, the resultant PNIPAM/PAN/TiO2 membrane has the bionic fish scale structure, and has wettability respond at lower critical solution temperature making the water flux decreased from 10013 ± 367 L m-2·h-1 to 7713 ± 324 L m-2·h-1, and thus has a potential to be used in purification of reclaimed water and separation of oil from water.
Collapse
Affiliation(s)
- Fei Sun
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
| | - Hai-Tao Ren
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Ting-Ting Li
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China.
| | - Shih-Yu Huang
- Department of Chemical Engineering and Materials, Ocean College, Minjiang University, Fuzhou 350108, China
| | - Yue Zhang
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Ching-Wen Lou
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; Department of Chemical Engineering and Materials, Ocean College, Minjiang University, Fuzhou 350108, China; Department of Bioinformatics and Medical Engineering, Asia University, Taichung 41354, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan; Advanced Medical Care and Protection Technology Research Center, College of Textile and Clothing, Qingdao University, Shandong 266071, China.
| | - Jia-Horng Lin
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China; Department of Chemical Engineering and Materials, Ocean College, Minjiang University, Fuzhou 350108, China; Advanced Medical Care and Protection Technology Research Center, College of Textile and Clothing, Qingdao University, Shandong 266071, China; Laboratory of Fiber Application and Manufacturing, Department of Fiber and Composite Materials, Feng Chia University, Taichung 40724, Taiwan; Department of Fashion Design, Asia University, Taichung 41354, Taiwan; School of Chinese Medicine, China Medical University, Taichung 40402, Taiwan.
| |
Collapse
|
8
|
Li D, Zhang Q, Zhao W, Dong S, Li T, Stang PJ. Thermo/Anion Dual-Responsive Supramolecular Organoplatinum–Crown Ether Complex. Org Lett 2020; 22:4289-4293. [DOI: 10.1021/acs.orglett.0c01333] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Doudou Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Qiao Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Wanxiang Zhao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Shengyi Dong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Tao Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Peter J. Stang
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| |
Collapse
|
9
|
Tchameni AP, Xie B, Zhang H, Zhao L, Luo M, Wen J. Thermo-associating polymers based on cross-linked 2-acrylamido-methylpropane sulfonic acid, part A: Synthesis and solution behavior. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124611] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
10
|
Zareei Pour F, Karimi H, Madadi Avargani V. Preparation of a superhydrophobic and superoleophilic polyester textile by chemical vapor deposition of dichlorodimethylsilane for Water–Oil separation. Polyhedron 2019. [DOI: 10.1016/j.poly.2018.11.040] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Monoolein cubic phase containing poly(hydroxyethyl acrylate-co-propyl methacrylate-co-methacrylic acid) and its electric field-driven release property. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2018.10.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
12
|
Li JJ, Zhou YN, Luo ZH, Zhu S. A polyelectrolyte-containing copolymer with a gas-switchable lower critical solution temperature-type phase transition. Polym Chem 2019. [DOI: 10.1039/c8py01265b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A polyelectrolyte-containing copolymer with a CO2/N2-switchable cloud point, resulting from the gas-induced alternation of hydrophilicity, was prepared.
Collapse
Affiliation(s)
- Jin-Jin Li
- Department of Chemical Engineering
- McMaster University
- Hamilton
- Canada
- Department of Chemical Engineering
| | - Yin-Ning Zhou
- Department of Chemical Engineering
- McMaster University
- Hamilton
- Canada
- Department of Chemical Engineering
| | - Zheng-Hong Luo
- Department of Chemical Engineering
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai
- China
| | - Shiping Zhu
- Department of Chemical Engineering
- McMaster University
- Hamilton
- Canada
- School of Science and Engineering
| |
Collapse
|
13
|
Li JJ, Zhou YN, Luo ZH. Polymeric materials with switchable superwettability for controllable oil/water separation: A comprehensive review. Prog Polym Sci 2018. [DOI: 10.1016/j.progpolymsci.2018.06.009] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
14
|
Poly(imidazoled glycidyl methacrylate-co-diethyleneglycol methyl ether methacrylate) – A new copolymer with tunable LCST and UCST behavior in water. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.10.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Guo Y, Song R, Feng R, Dai G, Liang Y, Pu D, Zhang X, Ye Z. Thermoresponsive behavior of graft copolymers based on poly(N,N-dimethylacrylamide-co-diacetoneacrylamide) side chains. J Appl Polym Sci 2018. [DOI: 10.1002/app.47051] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yongjun Guo
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation; Southwest Petroleum University; Chengdu People's Republic of China
- School of Chemistry and Chemical Engineering; Southwest Petroleum University; Chengdu People's Republic of China
- Sichuan Guangya Polymer Chemical Co.; Chengdu People's Republic of China
| | - Rutong Song
- School of Chemistry and Chemical Engineering; Southwest Petroleum University; Chengdu People's Republic of China
| | - Rusen Feng
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation; Southwest Petroleum University; Chengdu People's Republic of China
- School of Chemistry and Chemical Engineering; Southwest Petroleum University; Chengdu People's Republic of China
| | - Gang Dai
- China Resources Xinglu Gas Co.; Luzhou People's Republic of China
| | - Yan Liang
- Sichuan Guangya Polymer Chemical Co.; Chengdu People's Republic of China
| | - Di Pu
- Sichuan Guangya Polymer Chemical Co.; Chengdu People's Republic of China
| | - Xinmin Zhang
- School of Chemistry and Chemical Engineering; Southwest Petroleum University; Chengdu People's Republic of China
- Sichuan Guangya Polymer Chemical Co.; Chengdu People's Republic of China
| | - Zhongbin Ye
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation; Southwest Petroleum University; Chengdu People's Republic of China
- School of Chemistry and Chemical Engineering; Southwest Petroleum University; Chengdu People's Republic of China
| |
Collapse
|
16
|
Hall AR, Geoghegan M. Polymers and biopolymers at interfaces. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2018; 81:036601. [PMID: 29368695 DOI: 10.1088/1361-6633/aa9e9c] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
This review updates recent progress in the understanding of the behaviour of polymers at surfaces and interfaces, highlighting examples in the areas of wetting, dewetting, crystallization, and 'smart' materials. Recent developments in analysis tools have yielded a large increase in the study of biological systems, and some of these will also be discussed, focussing on areas where surfaces are important. These areas include molecular binding events and protein adsorption as well as the mapping of the surfaces of cells. Important techniques commonly used for the analysis of surfaces and interfaces are discussed separately to aid the understanding of their application.
Collapse
Affiliation(s)
- A R Hall
- Department of Physics and Astronomy, University of Sheffield, Hounsfield Road, Sheffield S3 7RH, United Kingdom. Fraunhofer Project Centre for Embedded Bioanalytical Systems, Dublin City University, Glasnevin, Dublin 9, Ireland
| | | |
Collapse
|
17
|
|
18
|
Affiliation(s)
- Yin-Ning Zhou
- Department
of Chemical Engineering, McMaster University, Hamilton, ON, Canada L8S 4L7
- Department
of Chemical Engineering, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China 200240
| | - Lei Lei
- Department
of Chemical Engineering, McMaster University, Hamilton, ON, Canada L8S 4L7
| | - Zheng-Hong Luo
- Department
of Chemical Engineering, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China 200240
| | - Shiping Zhu
- Department
of Chemical Engineering, McMaster University, Hamilton, ON, Canada L8S 4L7
| |
Collapse
|
19
|
Atanase L, Desbrieres J, Riess G. Micellization of synthetic and polysaccharides-based graft copolymers in aqueous media. Prog Polym Sci 2017. [DOI: 10.1016/j.progpolymsci.2017.06.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
20
|
Lligadas G, Grama S, Percec V. Single-Electron Transfer Living Radical Polymerization Platform to Practice, Develop, and Invent. Biomacromolecules 2017; 18:2981-3008. [DOI: 10.1021/acs.biomac.7b01131] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Gerard Lligadas
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
- Laboratory
of Sustainable Polymers, Department of Analytical Chemistry and Organic
Chemistry, Universitat Rovira i Virgili, Tarragona 43007, Spain
| | - Silvia Grama
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
21
|
Zhang Q, Jin B, Wang B, Fu Y, Zhan X, Chen F. Fabrication of a Highly Stable Superhydrophobic Surface with Dual-Scale Structure and Its Antifrosting Properties. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.6b04650] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Qinghua Zhang
- College of Chemical and Biological
Engineering, Zhejiang University, Hangzhou 310027, China
| | - Biyu Jin
- College of Chemical and Biological
Engineering, Zhejiang University, Hangzhou 310027, China
| | - Bing Wang
- College of Chemical and Biological
Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yuchen Fu
- College of Chemical and Biological
Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xiaoli Zhan
- College of Chemical and Biological
Engineering, Zhejiang University, Hangzhou 310027, China
| | - Fengqiu Chen
- College of Chemical and Biological
Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
22
|
Wei C, Zhang G, Zhang Q, Zhan X, Chen F. Silicone Oil-Infused Slippery Surfaces Based on Sol-Gel Process-Induced Nanocomposite Coatings: A Facile Approach to Highly Stable Bioinspired Surface for Biofouling Resistance. ACS APPLIED MATERIALS & INTERFACES 2016; 8:34810-34819. [PMID: 27998125 DOI: 10.1021/acsami.6b09879] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Slippery liquid-infused surfaces (SLIPS) have aroused widespread attention due to their excellent liquid-repellency properties associated with broad applications in various fields. However, the complicated preparation processes and the vulnerable surface lubricant layers severely restrict the practical applications of SLIPS. In this work, robust transparent slippery hybrid coatings (SHCs) were easily fabricated by the infusion of sol-gel-derived nanocomposite coatings in silicone oils of varying viscosity. The prepared silicone oil-infused surfaces exhibited outstanding long-term slippery stability even under extreme operating conditions such as high shear rate, elevated evaporation, and flowing aqueous immersion. Static bacteria culture tests confirmed that the SHCs could significantly inhibit biofilm formation. In addition, bovine serum albumin adhesion experiments were conducted after lubricant loss tests, showing significantly less protein absorption and a long service life of the SLIPS. The unique ultralow bacterial attachment and remarkably long-term protein-resistant performance render the as-prepared SLIPS as a promising candidate for biomedical applications even under harsh environmental conditions.
Collapse
Affiliation(s)
- Cunqian Wei
- College of Chemical and Biological Engineering, Zhejiang University , Hangzhou 310027, P. R. China
| | - Guangfa Zhang
- College of Chemical and Biological Engineering, Zhejiang University , Hangzhou 310027, P. R. China
| | - Qinghua Zhang
- College of Chemical and Biological Engineering, Zhejiang University , Hangzhou 310027, P. R. China
| | - Xiaoli Zhan
- College of Chemical and Biological Engineering, Zhejiang University , Hangzhou 310027, P. R. China
| | - Fengqiu Chen
- College of Chemical and Biological Engineering, Zhejiang University , Hangzhou 310027, P. R. China
| |
Collapse
|
23
|
Yuan H, Chi H, Yuan W. Ethyl cellulose amphiphilic graft copolymers with LCST-UCST transition: Opposite self-assembly behavior, hydrophilic-hydrophobic surface and tunable crystalline morphologies. Carbohydr Polym 2016; 147:261-271. [DOI: 10.1016/j.carbpol.2016.04.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 03/20/2016] [Accepted: 04/04/2016] [Indexed: 01/10/2023]
|
24
|
Zhang G, Jiang J, Zhang Q, Zhan X, Chen F. Amphiphilic poly(ether sulfone) membranes for oil/water separation: Effect of sequence structure of the modifier. AIChE J 2016. [DOI: 10.1002/aic.15365] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Guangfa Zhang
- College of Chemical and Biological Engineering; Zhejiang University; Hangzhou 310027 P.R. China
| | - Jingxian Jiang
- College of Chemical and Biological Engineering; Zhejiang University; Hangzhou 310027 P.R. China
| | - Qinghua Zhang
- College of Chemical and Biological Engineering; Zhejiang University; Hangzhou 310027 P.R. China
| | - Xiaoli Zhan
- College of Chemical and Biological Engineering; Zhejiang University; Hangzhou 310027 P.R. China
| | - Fengqiu Chen
- College of Chemical and Biological Engineering; Zhejiang University; Hangzhou 310027 P.R. China
| |
Collapse
|
25
|
Zhou YN, Luo ZH. State-of-the-Art and Progress in Method of Moments for the Model-Based Reversible-Deactivation Radical Polymerization. MACROMOL REACT ENG 2016. [DOI: 10.1002/mren.201500080] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yin-Ning Zhou
- Department of Chemical Engineering; School of Chemistry and Chemical Engineering; Shanghai Jiao Tong University; Shanghai 200240 P. R. China
| | - Zheng-Hong Luo
- Department of Chemical Engineering; School of Chemistry and Chemical Engineering; Shanghai Jiao Tong University; Shanghai 200240 P. R. China
| |
Collapse
|
26
|
Zhou YN, Li JJ, Luo ZH. Toward efficient water/oil separation material: Effect of copolymer composition on pH-responsive wettability and separation performance. AIChE J 2016. [DOI: 10.1002/aic.15145] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Yin-Ning Zhou
- Dept. of Chemical Engineering, School of Chemistry and Chemical Engineering; Shanghai Jiao Tong University; Shanghai 200240 P.R. China
| | - Jin-Jin Li
- Dept. of Chemical Engineering, School of Chemistry and Chemical Engineering; Shanghai Jiao Tong University; Shanghai 200240 P.R. China
| | - Zheng-Hong Luo
- Dept. of Chemical Engineering, School of Chemistry and Chemical Engineering; Shanghai Jiao Tong University; Shanghai 200240 P.R. China
| |
Collapse
|
27
|
Superhydrophobic poly(vinylidene fluoride) membranes with controllable structure and tunable wettability prepared by one-step electrospinning. POLYMER 2016. [DOI: 10.1016/j.polymer.2015.11.045] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
28
|
Cationic effect of an ionic copolymer with a temperature-responsive charateristic on the LCST value: A broad LCST spectrum of 35 to 46 °C. Macromol Res 2015. [DOI: 10.1007/s13233-015-3143-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
29
|
Zhou YN, Li JJ, Luo ZH. PhotoATRP-Based Fluorinated Thermosensitive Block Copolymer for Controllable Water/Oil Separation. Ind Eng Chem Res 2015. [DOI: 10.1021/acs.iecr.5b02394] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Yin-Ning Zhou
- Department of Chemical Engineering,
School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jin-Jin Li
- Department of Chemical Engineering,
School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zheng-Hong Luo
- Department of Chemical Engineering,
School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
30
|
Liang Y, Liu Z, Dai R, Meng W, Deng Y. Influence of Graft Density of Poly (N-Isopropylacrylamide)-Grafted Silica on Separation Performance. Chromatographia 2015. [DOI: 10.1007/s10337-015-2966-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
31
|
Anastasaki A, Nikolaou V, Nurumbetov G, Wilson P, Kempe K, Quinn JF, Davis TP, Whittaker MR, Haddleton DM. Cu(0)-Mediated Living Radical Polymerization: A Versatile Tool for Materials Synthesis. Chem Rev 2015; 116:835-77. [DOI: 10.1021/acs.chemrev.5b00191] [Citation(s) in RCA: 339] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Athina Anastasaki
- Chemistry
Department, University of Warwick, Library Road, CV4 7AL, Coventry, United Kingdom
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 399 Royal Parade, Parkville, Victoria 3152, Australia
| | - Vasiliki Nikolaou
- Chemistry
Department, University of Warwick, Library Road, CV4 7AL, Coventry, United Kingdom
| | - Gabit Nurumbetov
- Chemistry
Department, University of Warwick, Library Road, CV4 7AL, Coventry, United Kingdom
| | - Paul Wilson
- Chemistry
Department, University of Warwick, Library Road, CV4 7AL, Coventry, United Kingdom
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 399 Royal Parade, Parkville, Victoria 3152, Australia
| | - Kristian Kempe
- Chemistry
Department, University of Warwick, Library Road, CV4 7AL, Coventry, United Kingdom
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 399 Royal Parade, Parkville, Victoria 3152, Australia
| | - John F. Quinn
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 399 Royal Parade, Parkville, Victoria 3152, Australia
| | - Thomas P. Davis
- Chemistry
Department, University of Warwick, Library Road, CV4 7AL, Coventry, United Kingdom
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 399 Royal Parade, Parkville, Victoria 3152, Australia
| | - Michael R. Whittaker
- Chemistry
Department, University of Warwick, Library Road, CV4 7AL, Coventry, United Kingdom
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 399 Royal Parade, Parkville, Victoria 3152, Australia
| | - David M. Haddleton
- Chemistry
Department, University of Warwick, Library Road, CV4 7AL, Coventry, United Kingdom
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 399 Royal Parade, Parkville, Victoria 3152, Australia
| |
Collapse
|
32
|
YOSHIZAKI T, KANAZAWA A, KANAOKA S, AOSHIMA S. Precision Synthesis of Block Copolymers of 2-Methoxyethyl Vinyl Ether with Styrene Derivatives and Preparation of Highly Thermosensitive Films. KOBUNSHI RONBUNSHU 2015. [DOI: 10.1295/koron.2015-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Tomoya YOSHIZAKI
- Department of Macromolecular Science, Graduate School of Science, Osaka University
| | - Arihiro KANAZAWA
- Department of Macromolecular Science, Graduate School of Science, Osaka University
| | - Shokyoku KANAOKA
- Department of Macromolecular Science, Graduate School of Science, Osaka University
| | - Sadahito AOSHIMA
- Department of Macromolecular Science, Graduate School of Science, Osaka University
| |
Collapse
|