1
|
Relationship between the Molecular Geometry and the Radiative Efficiency in Naphthyl-Based Bis-Ortho-Carboranyl Luminophores. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196565. [PMID: 36235102 PMCID: PMC9572229 DOI: 10.3390/molecules27196565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022]
Abstract
The efficiency of intramolecular charge transfer (ICT)-based emission on π-aromatic-group-appended closo-ortho-carboranyl luminophores is known to be affected by structural fluctuations and molecular geometry, but investigation of this relationship has been in progress to date. In this study, four naphthyl-based bis-o-carboranyl compounds, in which hydrogen (15CH and 26CH) or trimethysilyl groups (15CS and 26CS) were appended at the o-carborane cage, were synthesized and fully characterized. All the compounds barely displayed an emissive trace in solution at 298 K; however, 15CH and 26CH distinctly exhibited a dual emissive pattern in rigid states (in solution at 77 K and in films), attributed to locally excited (LE) and ICT-based emission, while 15CS and 26CS showed strong ICT-based greenish emission. Intriguingly, the molecular structures of the four compounds, analyzed by single X-ray crystallography, showed that the C-C bond axis of the o-carborane cage in the trimethysilyl group-appended compounds 15CS and 26CS were more orthogonal to the plane of the appended naphthyl group than those in 15CH and 26CH. These features indicate that 15CS and 26CS present an efficient ICT transition based on strong exo-π-interaction, resulting in a higher quantum efficiency (Φem) for ICT-based radiative decay than those of 15CH and 26CH. Moreover, the 26CS structure revealed most orthogonal geometry, resulting in the highest Φem and lowest knr values for the ICT-based emission. Consequently, all the findings verified that efficient ICT-based radiative decay of aromatic group-appended o-carboranyl luminophores could be achieved by the formation of a specific geometry between the o-carborane cage and the aromatic plane.
Collapse
|
2
|
Incorporating Se atoms to organoboron polymer electron acceptors to tune opto-electronic properties. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
3
|
Yang J, Xiao B, Tang A, Li J, Wang X, Zhou E. Aromatic-Diimide-Based n-Type Conjugated Polymers for All-Polymer Solar Cell Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1804699. [PMID: 30300439 DOI: 10.1002/adma.201804699] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 08/21/2018] [Indexed: 06/08/2023]
Abstract
All-polymer solar cells (all-PSCs) have attracted immense attention in recent years due to their advantages of tunable absorption spectra and electronic energy levels for both donor and acceptor polymers, as well as their superior thermal and mechanical stability. The exploration of the novel n-type conjugated polymers (CPs), especially based on aromatic diimide (ADI), plays a vital role in the further improvement of power conversion efficiency (PCE) of all-PSCs. Here, recent progress in structure modification of ADIs including naphthalene diimide (NDI), perylene diimide (PDI), and corresponding derivatives is reviewed, and the structure-property relationships of ADI-based CPs are revealed.
Collapse
Affiliation(s)
- Jing Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Bo Xiao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ailing Tang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Jianfeng Li
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiaochen Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Erjun Zhou
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| |
Collapse
|
4
|
Lee C, Lee S, Kim GU, Lee W, Kim BJ. Recent Advances, Design Guidelines, and Prospects of All-Polymer Solar Cells. Chem Rev 2019; 119:8028-8086. [DOI: 10.1021/acs.chemrev.9b00044] [Citation(s) in RCA: 264] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Changyeon Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Seungjin Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Geon-U Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Wonho Lee
- Department of Polymer Science and Engineering, Kumoh National Institute of Technology, Gumi, Gyeongbuk 39177, South Korea
| | - Bumjoon J. Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| |
Collapse
|
5
|
Sun H, Wang L, Wang Y, Guo X. Imide‐Functionalized Polymer Semiconductors. Chemistry 2018; 25:87-105. [DOI: 10.1002/chem.201803605] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/30/2018] [Indexed: 11/05/2022]
Affiliation(s)
- Huiliang Sun
- Department of Materials Science and EngineeringSouthern University of Science and Technology Shenzhen Guangdong 518055 China
- Institute of Polymer Optoelectronic Materials & Devices, State Key Laboratory of Luminescent Materials & DevicesSouth China University of Technology Guangzhou Guangdong 510640 China
| | - Lei Wang
- Department of Materials Science and EngineeringSouthern University of Science and Technology Shenzhen Guangdong 518055 China
- The Co-Innovation Center of Chemistry and Chemical Engineering of Tianjin, Institute of Polymer Chemistry, College of ChemistryNankai University Tianjin 300071 China
| | - Yingfeng Wang
- Department of Materials Science and EngineeringSouthern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Xugang Guo
- Department of Materials Science and EngineeringSouthern University of Science and Technology Shenzhen Guangdong 518055 China
| |
Collapse
|
6
|
Yang J, Chen F, Ran H, Hu JY, Xiao B, Tang A, Wang X, Zhou E. Design and Synthesis of a Novel n-Type Polymer Based on Asymmetric Rylene Diimide for the Application in All-Polymer Solar Cells. Macromol Rapid Commun 2018; 39:e1700715. [DOI: 10.1002/marc.201700715] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 11/12/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Jing Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication; CAS Center for Excellence in Nanoscience; National Center for Nanoscience and Technology; Beijing 100190 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Fan Chen
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication; CAS Center for Excellence in Nanoscience; National Center for Nanoscience and Technology; Beijing 100190 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Huijuan Ran
- Shanxi Key Laboratory for Advanced Energy Devices; School of Materials Science and Engineering; Shanxi Normal University; Xi'an 710119 P. R. China
| | - Jian-Yong Hu
- Shanxi Key Laboratory for Advanced Energy Devices; School of Materials Science and Engineering; Shanxi Normal University; Xi'an 710119 P. R. China
| | - Bo Xiao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication; CAS Center for Excellence in Nanoscience; National Center for Nanoscience and Technology; Beijing 100190 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Ailing Tang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication; CAS Center for Excellence in Nanoscience; National Center for Nanoscience and Technology; Beijing 100190 P. R. China
| | - Xiaochen Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication; CAS Center for Excellence in Nanoscience; National Center for Nanoscience and Technology; Beijing 100190 P. R. China
| | - Erjun Zhou
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication; CAS Center for Excellence in Nanoscience; National Center for Nanoscience and Technology; Beijing 100190 P. R. China
| |
Collapse
|
7
|
Cai Y, Huo L, Sun Y. Recent Advances in Wide-Bandgap Photovoltaic Polymers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1605437. [PMID: 28370466 DOI: 10.1002/adma.201605437] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 01/17/2017] [Indexed: 06/07/2023]
Abstract
The past decade has witnessed significant advances in the field of organic solar cells (OSCs). Ongoing improvements in the power conversion efficiency of OSCs have been achieved, which were mainly attributed to the design and synthesis of novel conjugated polymers with different architectures and functional moieties. Among various conjugated polymers, the development of wide-bandgap (WBG) polymers has received less attention than that of low-bandgap and medium-bandgap polymers. Here, we briefly summarize recent advances in WBG polymers and their applications in organic photovoltaic (PV) devices, such as tandem, ternary, and non-fullerene solar cells. Addtionally, we also dissuss the application of high open-circuit voltage tandem solar cells in PV-driven electrochemical water dissociation. We mainly focus on the molecular design strategies, the structure-property correlations, and the photovoltaic performance of these WBG polymers. Finally, we extract empirical regularities and provide invigorating perspectives on the future development of WBG photovoltaic materials.
Collapse
Affiliation(s)
- Yunhao Cai
- Heeger Beijing Research and Development Center, School of Chemistry and Environment, Beihang University, Beijing, 100191, P.R. China
| | - Lijun Huo
- Heeger Beijing Research and Development Center, School of Chemistry and Environment, Beihang University, Beijing, 100191, P.R. China
| | - Yanming Sun
- Heeger Beijing Research and Development Center, School of Chemistry and Environment, Beihang University, Beijing, 100191, P.R. China
| |
Collapse
|
8
|
Yang J, Xiao B, Tajima K, Nakano M, Takimiya K, Tang A, Zhou E. Comparison among Perylene Diimide (PDI), Naphthalene Diimide (NDI), and Naphthodithiophene Diimide (NDTI) Based n-Type Polymers for All-Polymer Solar Cells Application. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00414] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Jing Yang
- CAS Key Laboratory
of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence
in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- University of Chinese
Academy of Sciences, Beijing 100049, P. R. China
| | - Bo Xiao
- CAS Key Laboratory
of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence
in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- University of Chinese
Academy of Sciences, Beijing 100049, P. R. China
| | - Keisuke Tajima
- RIKEN Center for Emergent
Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Masahiro Nakano
- RIKEN Center for Emergent
Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kazuo Takimiya
- RIKEN Center for Emergent
Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Ailing Tang
- CAS Key Laboratory
of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence
in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Erjun Zhou
- CAS Key Laboratory
of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence
in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| |
Collapse
|
9
|
Al Kobaisi M, Bhosale SV, Latham K, Raynor AM, Bhosale SV. Functional Naphthalene Diimides: Synthesis, Properties, and Applications. Chem Rev 2016; 116:11685-11796. [DOI: 10.1021/acs.chemrev.6b00160] [Citation(s) in RCA: 524] [Impact Index Per Article: 58.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Mohammad Al Kobaisi
- School
of Applied Sciences, RMIT University
, GPO Box 2476, Melbourne, Victoria
3001, Australia
| | - Sidhanath V. Bhosale
- Polymers
and Functional Materials Division, CSIR-Indian Institute of Chemical Technology
, Hyderabad, Telangana-500007, India
| | - Kay Latham
- School
of Applied Sciences, RMIT University
, GPO Box 2476, Melbourne, Victoria
3001, Australia
| | - Aaron M. Raynor
- School
of Applied Sciences, RMIT University
, GPO Box 2476, Melbourne, Victoria
3001, Australia
| | - Sheshanath V. Bhosale
- School
of Applied Sciences, RMIT University
, GPO Box 2476, Melbourne, Victoria
3001, Australia
| |
Collapse
|
10
|
Facile synthesis of naphthodithiophenediimide based small molecules and polymers via direct arylation coupling. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.02.081] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Choy WCH, Zhang D. Solution-Processed Metal Oxides as Efficient Carrier Transport Layers for Organic Photovoltaics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:416-431. [PMID: 26663889 DOI: 10.1002/smll.201502258] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 09/22/2015] [Indexed: 06/05/2023]
Abstract
Carrier (electron and hole) transport layers (CTLs) are essential components for boosting the performance of various organic optoelectronic devices such as organic solar cells and organic light-emitting diodes. Considering the drawbacks of conventional CTLs (easily oxidized/unstable, demanding/costly fabrication, etc.), transition metal oxides with good carrier transport/extraction and superior stability have drawn extensive research interest as CTLs for next-generation devices. In recent years, many research efforts have been made toward the development of solution-based metal oxide CTLs with the focus on low- or even room-temperature processes, which can potentially be compatible with the deposition processes of organic materials and can significantly contribute to the low-cost and scale-up of organic devices. Here, the recent progress of different types of solution-processed metal oxide CTLs are systematically reviewed in the context of organic photovoltaics, from synthesis approaches to device performance. Different approaches for further enhancing the performance of solution-based metal oxide CTLs are also discussed, which may push the future development of this exciting field.
Collapse
Affiliation(s)
- Wallace C H Choy
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Di Zhang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|