1
|
Rao YF, Sun LZ, Luo MB. Na +-Mg 2+ ion effects on conformation and translocation dynamics of single-stranded RNA: Cooperation and competition. Int J Biol Macromol 2024; 267:131273. [PMID: 38569994 DOI: 10.1016/j.ijbiomac.2024.131273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/20/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024]
Abstract
The nanopore-based translocation of a single-stranded RNA (ssRNA) in mixed salt solution has garnered increasing interest for its biological and technological significance. However, it is challenging to comprehensively understand the effects of the mixed ion species on the translocation dynamics due to their cooperation and competition, which can be directly reflected by the ion screening and neutralizing effects, respectively. In this study, Langevin dynamics simulation is employed to investigate the properties of ssRNA conformation and translocation in mixed Na+-Mg2+ ion environments. Simulation results reveal that the ion screening effect dominates the change in the ssRNA conformational size, the ion neutralizing effect controls the capture rate of the ssRNA by the nanopore, and both of them take charge of the different changes in translocation time of the ssRNA under various mixed ion environments. Under high Na+ ion concentration, as Mg2+ concentration increases, the ion neutralizing effect strengthens, weakening the driving force inside the nanopore, leading to longer translocation time. Conversely, at low Na+ concentration, an increase in Mg2+ concentration enhances the ion screening effect, aiding in faster translocation. Furthermore, these simulation results will be explained by quantitative analysis, advancing a deeper understanding of the complicated effects of the mixed Na+-Mg2+ ions.
Collapse
Affiliation(s)
- Yi-Fan Rao
- School of Physics, Zhejiang University, Hangzhou 310027, China; Department of Applied Physics, Zhejiang University of Technology, Hangzhou 310023, China
| | - Li-Zhen Sun
- Department of Applied Physics, Zhejiang University of Technology, Hangzhou 310023, China.
| | - Meng-Bo Luo
- School of Physics, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
2
|
Lu LW, Wang ZH, Shi AC, Lu YY, An LJ. Polymer Translocation. CHINESE JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1007/s10118-023-2975-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
3
|
Wang Z, Wang ZG, Shi AC, Lu Y, An L. Behaviors of a Polymer Chain in Channels: From Zimm to Rouse Dynamics. Macromolecules 2023. [DOI: 10.1021/acs.macromol.3c00013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Affiliation(s)
- Zhenhua Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
| | - Zhen-Gang Wang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - An-Chang Shi
- Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Yuyuan Lu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
| | - Lijia An
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
| |
Collapse
|
4
|
He J, Zhou J, Yang J, Zhu M, Li L. Exploring the Feasibility of Utilizing Nanopore-Based Ultrafiltration for the Purification of Graft-Onto Polymerization Products. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jing He
- Department of Chemical Physics, University of Science and Technology of China, Hefei230026, China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen518060, China
| | - Jianing Zhou
- Department of Chemical Physics, University of Science and Technology of China, Hefei230026, China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen518060, China
| | - Jinxian Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen518060, China
| | - Mo Zhu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen518060, China
| | - Lianwei Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen518060, China
| |
Collapse
|
5
|
Yu P, Li Y, Sun H, Ke X, Xing J, Zhao Y, Xu X, Qin M, Xie J, Li J. Cartilage-Inspired Hydrogel with Mechanical Adaptability, Controllable Lubrication, and Inflammation Regulation Abilities. ACS APPLIED MATERIALS & INTERFACES 2022; 14:27360-27370. [PMID: 35658410 DOI: 10.1021/acsami.2c04609] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cartilage is a key component in joints because of its load-bearing and lubricating abilities. However, osteoarthritis often leads to afunction of load-bearing/lubrication and occurrence of inflammation with overexpressed reactive oxygen species (ROS) and nitric oxide (NO). To address these issues, we fabricated a novel polyanionic hydrogel with abundant carboxylates/sulfonates ("CS" hydrogel), inspired by normal cartilage rich in anionic hyaluronate/sulfonate glycosaminoglycan/lubricin, and crosslinked it tightly by Fe3+ ("CS-Fe" hydrogel). The "CS-Fe" hydrogel displayed mechanical adaptability and shear resistance. A low coefficient of friction (∼0.02) appeared when a loose hydrogel layer was generated because of the photoreduction of Fe3+ to Fe2+ by UV irradiation. This biocompatible "CS-Fe" hydrogel suppressed the overexpressed hydroxyl radical (·OH) and NO in macrophages and protected chondrocytes/fibroblasts from aggressive inflammation. Moreover, the layered "CS-Fe" hydrogel avoided cell death of chondrocytes in sliding tests. The results demonstrate that this cartilage-inspired hydrogel is a promising candidate material in cartilage tissue engineering to especially address inflammation.
Collapse
Affiliation(s)
- Peng Yu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Yanyan Li
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Hui Sun
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Xiang Ke
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Jiaqi Xing
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Yiran Zhao
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Xinyuan Xu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Meng Qin
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Jing Xie
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Jianshu Li
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P.R. China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
- Med-X Center for Materials, Sichuan University, Chengdu 610041, P.R. China
| |
Collapse
|
6
|
Sun LZ, Qian JL, Cai P, Hu HX, Xu X, Luo MB. Mg2+ effects on the single-stranded DNA conformations and nanopore translocation dynamics. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
7
|
Wang Z, Wang R, Lu Y, An L, Shi AC, Wang ZG. Mechanisms of Flow-Induced Polymer Translocation. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Zhenhua Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Ruishu Wang
- Department of Mathematics, Jilin University, Changchun 130012, P. R. China
| | - Yuyuan Lu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Lijia An
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - An-Chang Shi
- Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Zhen-Gang Wang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
8
|
Pan X, Ding M, Li L. Experimental Validation on Average Conformation of a Comblike Polystyrene Library in Dilute Solutions: Universal Scaling Laws and Abnormal SEC Elution Behavior. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Xuejun Pan
- Food Science and Processing Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Mingming Ding
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Lianwei Li
- Food Science and Processing Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
9
|
Ding M, Li L. Flow-Induced Translocation and Conformational Transition of Polymer Chains through Nanochannels: Recent Advances and Future Perspectives. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00909] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mingming Ding
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Lianwei Li
- Food Science and Processing Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
10
|
Ma T, Janot JM, Balme S. Dynamics of long hyaluronic acid chains through conical nanochannels for characterizing enzyme reactions in confined spaces. NANOSCALE 2020; 12:7231-7239. [PMID: 32195519 DOI: 10.1039/d0nr00645a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This research reports the transport behaviors of long flexible polymers (hyaluronic acid) through long conical track-etched nanochannels with and without grafted enzymes. The impacts of the channel diameter and the polymer regimes in solution (dilute and semi-dilute) have been investigated. Without enzymes, the experimental results can be well explained by the analytical models of the scaling law of de Gennes. Then, the corresponding enzymes (hyaluronidase) were grafted inside the channel. When enzymes are located at the base side, polymers get degraded at the entrance and the degraded products are detected. When enzymes are grafted at the tip side, the extension of translocation duration due to the binding of substrate-enzyme is observed. This is for the first time that the enzymatic degradation reactions are characterized in situ at the single molecule level by nanopore technology.
Collapse
Affiliation(s)
- Tianji Ma
- Institut Européen des Membranes, UMR5635 UM ENSCM CNRS, Place Eugène Bataillon, 34095 Montpellier cedex 5, France.
| | | | | |
Collapse
|
11
|
Yang J, Zheng T, Umair A, Li L. “Dead-End” Ultrafiltration: A Powerful Technique Utilizing “Coil-to-Stretch” Transition for Polymer Separation/Fractionation. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02753] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Jinxian Yang
- Food Science and Processing Research Center, Shenzhen University, Shenzhen 518060, China
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Tao Zheng
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ahmad Umair
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lianwei Li
- Food Science and Processing Research Center, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
12
|
He J, Zheng T, Li L. Study of Flow-Driven Translocation of Flexible Polymer Chains through Cylindrical Nanopores in Unentangled Semidilute Solutions. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00289] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jing He
- Food Science and Processing Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Tao Zheng
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Lianwei Li
- Food Science and Processing Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
13
|
Wang Z, Xu J, Li M, Su C, Wu X, Zhang Y, You J, Li C. Separation of Caustic Nano-Emulsions and Macromolecular Conformations with Nanofibrous Membranes of Marine Chitin. ACS APPLIED MATERIALS & INTERFACES 2019; 11:8576-8583. [PMID: 30707558 DOI: 10.1021/acsami.8b21847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Sustainable development of nanotechnology is challenged by nanoscale pollutants and oily water. Biobased nanoporous membranes, though serving as one of the most eco-friendly separation technologies, cannot be applied widely because of their broad pore distributions, poor solvent resistance, and structural instability. In order to avoid possible leakage of nanoscale objects in caustic and organic solvents, herein, we endeavored to exfoliate chitin nanofibrils with identical chemical and crystalline structures to pristine chitin in portunid carapace and further produce nanoporous and mesoporous membranes with super structural stability, endurance, permeation flux and rejection. The final membranes had minimal ionization, controllable thickness, and tunable and narrow distribution of pore size, being able to separate nano-emulsions, nanoparticles, and rigid macromolecules in caustic aqueous solutions and organic solvents. Thus, these scalable, low-cost, and sustainable membranes may promise applications as diverse as in separating and concentrating nanoparticles in nanotechnology, oil/water separation in wastewater treatment, and molecular sieving in biomedicine and material science.
Collapse
Affiliation(s)
- Zengbin Wang
- Institute of Material Science and Engineering , Ocean University of China , Qingdao , Shandong 266100 , P. R. China
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology , Chinese Academy of Sciences , Songling Road 189 , Qingdao 266101 , P. R. China
| | - Jie Xu
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology , Chinese Academy of Sciences , Songling Road 189 , Qingdao 266101 , P. R. China
| | - Mingjie Li
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology , Chinese Academy of Sciences , Songling Road 189 , Qingdao 266101 , P. R. China
| | - Chunlei Su
- Key Laboratory of Green Process and Engineering, Institute of Process Engineering , Chinese Academy of Sciences , Beijing 100190 , PR China
| | - Xiaochen Wu
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology , Chinese Academy of Sciences , Songling Road 189 , Qingdao 266101 , P. R. China
| | - Yue Zhang
- Institute of Material Science and Engineering , Ocean University of China , Qingdao , Shandong 266100 , P. R. China
| | - Jun You
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology , Chinese Academy of Sciences , Songling Road 189 , Qingdao 266101 , P. R. China
| | - Chaoxu Li
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology , Chinese Academy of Sciences , Songling Road 189 , Qingdao 266101 , P. R. China
| |
Collapse
|
14
|
Zheng T, Zhu M, Yang J, He J, Waqas M, Li L. Revisiting the Flow-Driven Translocation of Flexible Linear Chains through Cylindrical Nanopores: Is the Critical Flow Rate Really Independent of the Chain Length? Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b02082] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tao Zheng
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Mo Zhu
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jinxian Yang
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jing He
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Muhammad Waqas
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lianwei Li
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
15
|
Zheng T, Yang J, He J, Li L. Origin of Inconsistency in Experimentally Observed Transition Widths and Critical Flow Rates in Ultrafiltration Studies of Flexible Linear Chains. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01436] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tao Zheng
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jinxian Yang
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jing He
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lianwei Li
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
16
|
Pomposo JA, Rubio-Cervilla J, Gonzalez E, Moreno AJ, Arbe A, Colmenero J. Ultrafiltration of single-chain polymer nanoparticles through nanopores and nanoslits. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.06.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Castro V, Noti C, Chen W, Cristau M, Livignston A, Rodríguez H, Albericio F. Novel Globular Polymeric Supports for Membrane-Enhanced Peptide Synthesis. Macromolecules 2017. [DOI: 10.1021/acs.macromol.6b02258] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Vida Castro
- Institute for Research in Biomedicine
(IRB Barcelona), 08028 Barcelona, Spain
| | | | | | | | | | - Hortensia Rodríguez
- Institute for Research in Biomedicine
(IRB Barcelona), 08028 Barcelona, Spain
- School of Chemistry, Yachay Tech, Yachay City of Knowledge, Urcuqui, Ecuador
| | - Fernando Albericio
- Institute for Research in Biomedicine
(IRB Barcelona), 08028 Barcelona, Spain
- Department of Organic Chemistry, University of Barcelona, 08028 Barcelona, Spain
- Networking Centre
on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 08028 Barcelona, Spain
- School of Chemistry, University of KwaZulu Natal, Durban 4000, South Africa
| |
Collapse
|
18
|
Rukhlya EG, Yarysheva LM, Volynskii AL, Bakeev NF. Effects of tensile strain on the peculiarities of PEO penetration into the nanoporous structure of PET deformed via the crazing mechanism. Phys Chem Chem Phys 2016; 18:9396-404. [PMID: 26979240 DOI: 10.1039/c5cp07842c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Solvent crazing involves the development of a highly dispersed fibrillar-porous structure with dimensions of pores and craze fibrils of about 2-20 nm, and crazing by itself can be treated as a universal method for the development of nanoscale porosity. The penetration and release of poly(ethylene oxide) macromolecules into and from the crazes during the development of the nanoporous structure of poly(ethylene terephthalate) have been studied. In particular, PET has been deformed in dilute or semidilute (unentangled as well as entangled) solutions of PEO (a Mw of 4 and 40 kDa) via the mechanism of solvent crazing. Hydrodynamic coil radii Rh, blob sizes ξ, and concentration ranges (crossover and entanglement concentrations) have been determined for the PEO solutions. The evolution of the craze structure (change in porosity W and pore diameters d) has been described as a function of the tensile strain of PET during its drawing in an adsorption-active medium and in the PEO solutions. PEO has been shown to penetrate into the nanoporous structure of the crazes under the conditions corresponding to Rh≤d and ξ < d. It has been shown that coagulation processes in the structure of crazed PET, PEO adsorption at the highly developed surface of PET, and the mechanism of PEO transport in the nanopores are equally important factors affecting the direction of the macromolecule mass transfer in the nanopores (penetration or release) and PEO content variation as a function of PET tensile strain.
Collapse
Affiliation(s)
- E G Rukhlya
- Faculty of Chemistry, M. V. Lomonosov Moscow State University, Leninskie gory 1, Moscow 119234, Russia.
| | | | | | | |
Collapse
|