1
|
Cao W, Tan L, Wang H, Yuan J. Dual-Cationic Poly(ionic liquid)s Carrying 1,2,4-Triazolium and Imidazolium Moieties: Synthesis and Formation of a Single-Component Porous Membrane. ACS Macro Lett 2021; 10:161-166. [PMID: 33489467 PMCID: PMC7818656 DOI: 10.1021/acsmacrolett.0c00784] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/06/2021] [Indexed: 11/29/2022]
Abstract
Both imidazolium and 1,2,4-triazolium cations are important functional moieties widely incorporated as building blocks in poly(ionic liquid)s (PILs). In a classical model, a PIL usually contains either imidazolium or 1,2,4-triazolium in its repeating unit. Herein, via exploiting the slight reactivity difference of alkyl bromide with imidazole and 1,2,4-triazole at room temperature, we synthesized dual-cationic PIL homopolymers carrying both imidazolium and 1,2,4-triazolium moieties in the same repeating unit, that is, an asymmetrically dicationic unit. We investigated their fundamental properties, for example, thermal stability and solubility, as well as their unique function in forming supramolecular porous membranes via a water-initiated phase-separation and cross-linking process. With such knowledge, we identified a water-based fabricate strategy toward air-stable porous membranes from single-component PILs. This study will enrich the design tools and chemical structure library of PILs and expand their application spectrum.
Collapse
Affiliation(s)
- Wei Cao
- Department
of Materials and Environmental Chemistry, Stockholm University, Stockholm 10691, Sweden
| | - Liangxiao Tan
- Department
of Materials and Environmental Chemistry, Stockholm University, Stockholm 10691, Sweden
| | - Hong Wang
- Key
Laboratory of Functional Polymer Materials, Ministry of Education),
Institute of Polymer Chemistry, College of chemistry, Nankai University, Tianjin 300071, People’s Republic
of China
| | - Jiayin Yuan
- Department
of Materials and Environmental Chemistry, Stockholm University, Stockholm 10691, Sweden
| |
Collapse
|
2
|
Yahia M, Mei S, Mathew AP, Yuan J. Linear Main-Chain 1,2,4-Triazolium Poly(ionic liquid)s: Single-Step Synthesis and Stabilization of Cellulose Nanocrystals. ACS Macro Lett 2019; 8:1372-1377. [PMID: 35651167 DOI: 10.1021/acsmacrolett.9b00542] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Linear main-chain 1,2,4-triazolium-based poly(ionic liquid)s (PILs) were synthesized in this contribution. The polymerization process is experimentally very simple and involves only a single-step polycondensation of a commercially available monomer in DMSO as solvent at 120 °C. Their thermal stability and solubility were analyzed in terms of different counteranions. Due to the ease of this synthetic route, it was readily applied to graft onto sulfonated cellulose nanocrystals (CNCs) via a one-step in situ polymerization. The as-synthesized PIL@CNC hybrid colloids exhibit adaptive dispensability in water and organic solvents.
Collapse
Affiliation(s)
- Mohamed Yahia
- Department of Materials and Environmental Chemistry (MMK), Stockholm University, 10691 Stockholm, Sweden
- Department of Chemistry, Faculty of Science, Helwan University, Ain-Helwan, Cairo 11795, Egypt
| | - Shilin Mei
- Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Hahn-Meitner Platz 1, 14109 Berlin, Germnay
| | - Aji P. Mathew
- Department of Materials and Environmental Chemistry (MMK), Stockholm University, 10691 Stockholm, Sweden
| | - Jiayin Yuan
- Department of Materials and Environmental Chemistry (MMK), Stockholm University, 10691 Stockholm, Sweden
| |
Collapse
|
3
|
Tracy C, Adler AM, Nguyen A, Johnson RD, Miller KM. Covalently Crosslinked 1,2,3-Triazolium-Containing Polyester Networks: Thermal, Mechanical, and Conductive Properties. ACS OMEGA 2018; 3:13442-13453. [PMID: 31458056 PMCID: PMC6644408 DOI: 10.1021/acsomega.8b01949] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 10/05/2018] [Indexed: 05/05/2023]
Abstract
Azide-alkyne "click" cyclization was used to prepare a series of polymerizable acetoacetate monomers containing a 1,2,3-trizolium ionic liquid group. The monomers were subsequently polymerized using base-catalyzed Michael addition chemistry, producing a series of covalently crosslinked 1,2,3-triazolium poly(ionic liquid) (TPIL) networks. Structure-activity relationships were conducted to gauge how synthetic variables, such as counteranion ([Br], [NO3], [BF4], [OTf], and [NTf2]), and crosslink density (acrylate/acetoacetate ratio) effected thermal, mechanical, and conductive properties. TPIL networks were found to exhibit ionic conductivities in the range of 10-6-10-9 S/cm (30 °C, 30% relative humidity), as determined from dielectric relaxation spectroscopy, despite their highly crosslinked nature. Temperature-dependent conductivities demonstrate a dependence on polymer glass transition, with free-ion concentrations impacted by various ions' Lewis acidity/basicity and ion mobilities impacted by freely mobile anion size.
Collapse
Affiliation(s)
- Clayton
A. Tracy
- Department of Chemistry, Murray State University, 1201 Jesse D. Jones Hall, Murray, Kentucky 42071, United
States
| | - Abagail M. Adler
- Department of Chemistry, Murray State University, 1201 Jesse D. Jones Hall, Murray, Kentucky 42071, United
States
| | - Anh Nguyen
- Department of Chemistry, Murray State University, 1201 Jesse D. Jones Hall, Murray, Kentucky 42071, United
States
| | - R. Daniel Johnson
- Department of Chemistry, Murray State University, 1201 Jesse D. Jones Hall, Murray, Kentucky 42071, United
States
| | - Kevin M. Miller
- Department of Chemistry, Murray State University, 1201 Jesse D. Jones Hall, Murray, Kentucky 42071, United
States
| |
Collapse
|
4
|
Design of ion-conductive core-shell nanoparticles via site-selective quaternization of triazole–triazolium salt block copolymers. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.06.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
5
|
Probing the dynamic and rehealing behavior of crosslinked polyester networks containing thermoreversible thiol-Michael bonds. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.05.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Nguyen A, Rhoades TC, Johnson RD, Miller KM. Influence of Anion and Crosslink Density on the Ionic Conductivity of 1,2,3‐Triazolium‐Based Poly(ionic liquid) Polyester Networks. MACROMOL CHEM PHYS 2017. [DOI: 10.1002/macp.201700337] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Anh Nguyen
- 1201 Jesse D. Jones Hall Department of Chemistry Murray State University Murray KY 42071 USA
| | - Taylor C. Rhoades
- 1201 Jesse D. Jones Hall Department of Chemistry Murray State University Murray KY 42071 USA
| | - R. Daniel Johnson
- 1201 Jesse D. Jones Hall Department of Chemistry Murray State University Murray KY 42071 USA
| | - Kevin M. Miller
- 1201 Jesse D. Jones Hall Department of Chemistry Murray State University Murray KY 42071 USA
| |
Collapse
|
7
|
Zhang W, Willa C, Sun JK, Guterman R, Taubert A, Yuan J. Polytriazolium poly(ionic liquid) bearing triiodide anions: Synthesis, basic properties and electrochemical behaviors. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.07.059] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Zhou X, Obadia MM, Venna SR, Roth EA, Serghei A, Luebke DR, Myers C, Chang Z, Enick R, Drockenmuller E, Nulwala HB. Highly cross-linked polyether-based 1,2,3-triazolium ion conducting membranes with enhanced gas separation properties. Eur Polym J 2016. [DOI: 10.1016/j.eurpolymj.2016.09.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
9
|
Rhoades TC, Wistrom JC, Daniel Johnson R, Miller KM. Thermal, mechanical and conductive properties of imidazolium-containing thiol-ene poly(ionic liquid) networks. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.08.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
Nakabayashi K, Umeda A, Sato Y, Mori H. Synthesis of 1,2,4-triazolium salt-based polymers and block copolymers by RAFT polymerization: Ion conductivity and assembled structures. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.04.062] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Zhang W, Yuan J. Poly(1-Vinyl-1,2,4-triazolium) Poly(Ionic Liquid)s: Synthesis and the Unique Behavior in Loading Metal Ions. Macromol Rapid Commun 2016; 37:1124-9. [PMID: 26987872 DOI: 10.1002/marc.201600001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 02/11/2016] [Indexed: 11/12/2022]
Abstract
Herein, the synthesis of a series of poly(4-alkyl-1-vinyl-1,2,4-triazolium) poly(ionic liquid)s is reported either via straightforward free radical polymerization of their corresponding ionic liquid monomers or via anion metathesis of the polymer precursors bearing halide as counter anion. The ionic liquid monomers are first prepared via N-alkylation reaction of commercially available 1-vinyl-1,2,4-triazole with alkyl iodides, followed by anion metathesis with targeted fluorinated anions. The thermal properties and solubilities of these poly(ionic liquid)s have been systematically investigated. Interestingly, it is found that the poly(4-ethyl-1-vinyl-1,2,4-triazolium) poly(ionic liquid) exhibited an improved loading capacity of transition metal ions in comparison with its imidazolium counterpart.
Collapse
Affiliation(s)
- Weiyi Zhang
- Max Planck Institute of Colloids and Interfaces, D-14476, Potsdam, Germany
| | - Jiayin Yuan
- Max Planck Institute of Colloids and Interfaces, D-14476, Potsdam, Germany
| |
Collapse
|
12
|
Obadia MM, Drockenmuller E. Poly(1,2,3-triazolium)s: a new class of functional polymer electrolytes. Chem Commun (Camb) 2016; 52:2433-50. [DOI: 10.1039/c5cc09861k] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Poly(1,2,3-triazolium)s are tunable and highly functional ion conducting materials that stretch out the actual boundaries of PILs macromolecular design.
Collapse
Affiliation(s)
- Mona M. Obadia
- Université de Lyon 1
- Laboratoire d'Ingénierie des Matériaux Polymères (IMP, UMR CNRS 5223)
- 69622 Villeurbanne Cedex
- France
| | - Eric Drockenmuller
- Université de Lyon 1
- Laboratoire d'Ingénierie des Matériaux Polymères (IMP, UMR CNRS 5223)
- 69622 Villeurbanne Cedex
- France
| |
Collapse
|