1
|
Chen Y, Wang L, Zhong C, Chen WS, Li SC, Shao J, Li G, Hou HQ. The isothermal crystallization kinetic of poly(L-lactide)-block-poly(ethylene glycol) block copolymers (PLLA-PEG): Effect of block lengths of PEG and PLLA. CrystEngComm 2022. [DOI: 10.1039/d2ce00448h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Poly(ethylene glycol)-block-poly(L-lactide) (PEG-PLLA) is a biodegradable copolymer which widely applied to medicine and drug system, and the morphology, organization and mechanical properties were extensively investigated. However, the crystallization kinetic were...
Collapse
|
2
|
Matxinandiarena E, Múgica A, Zubitur M, Ladelta V, Zapsas G, Cavallo D, Hadjichristidis N, Müller AJ. Crystallization and Morphology of Triple Crystalline Polyethylene- b-poly(ethylene oxide)- b-poly(ε-caprolactone) PE- b-PEO- b-PCL Triblock Terpolymers. Polymers (Basel) 2021; 13:polym13183133. [PMID: 34578032 PMCID: PMC8473441 DOI: 10.3390/polym13183133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 11/17/2022] Open
Abstract
The morphology and crystallization behavior of two triblock terpolymers of polymethylene, equivalent to polyethylene (PE), poly (ethylene oxide) (PEO), and poly (ε-caprolactone) (PCL) are studied: PE227.1-b-PEO4615.1-b-PCL3210.4 (T1) and PE379.5-b-PEO348.8-b-PCL297.6 (T2) (superscripts give number average molecular weights in kg/mol and subscripts composition in wt %). The three blocks are potentially crystallizable, and the triple crystalline nature of the samples is investigated. Polyhomologation (C1 polymerization), ring-opening polymerization, and catalyst-switch strategies were combined to synthesize the triblock terpolymers. In addition, the corresponding PE-b-PEO diblock copolymers and PE homopolymers were also analyzed. The crystallization sequence of the blocks was determined via three independent but complementary techniques: differential scanning calorimetry (DSC), in situ SAXS/WAXS (small angle X-ray scattering/wide angle X-ray scattering), and polarized light optical microscopy (PLOM). The two terpolymers (T1 and T2) are weakly phase segregated in the melt according to SAXS. DSC and WAXS results demonstrate that in both triblock terpolymers the crystallization process starts with the PE block, continues with the PCL block, and ends with the PEO block. Hence triple crystalline materials are obtained. The crystallization of the PCL and the PEO block is coincident (i.e., it overlaps); however, WAXS and PLOM experiments can identify both transitions. In addition, PLOM shows a spherulitic morphology for the PE homopolymer and the T1 precursor diblock copolymer, while the other systems appear as non-spherulitic or microspherulitic at the last stage of the crystallization process. The complicated crystallization of tricrystalline triblock terpolymers can only be fully grasped when DSC, WAXS, and PLOM experiments are combined. This knowledge is fundamental to tailor the properties of these complex but fascinating materials.
Collapse
Affiliation(s)
- Eider Matxinandiarena
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018 Donostia-San Sebastián, Spain; (E.M.); (A.M.)
| | - Agurtzane Múgica
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018 Donostia-San Sebastián, Spain; (E.M.); (A.M.)
| | - Manuela Zubitur
- Department of Chemical and Environmental Engineering, University of the Basque Country UPV/EHU, Plaza Europa 1, 20018 Donostia-San Sebastián, Spain;
| | - Viko Ladelta
- Polymer Synthesis Laboratory, KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia; (V.L.); (G.Z.)
| | - George Zapsas
- Polymer Synthesis Laboratory, KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia; (V.L.); (G.Z.)
| | - Dario Cavallo
- Department of Chemistry and Industrial Chemistry, University of Genova, via Dodecaneso 31, 16146 Genova, Italy;
| | - Nikos Hadjichristidis
- Polymer Synthesis Laboratory, KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia; (V.L.); (G.Z.)
- Correspondence: (N.H.); (A.J.M.)
| | - Alejandro J. Müller
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018 Donostia-San Sebastián, Spain; (E.M.); (A.M.)
- Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
- Correspondence: (N.H.); (A.J.M.)
| |
Collapse
|
3
|
Matxinandiarena E, Múgica A, Tercjak A, Ladelta V, Zapsas G, Hadjichristidis N, Cavallo D, Flores A, Müller AJ. Sequential Crystallization and Multicrystalline Morphology in PE- b-PEO- b-PCL- b-PLLA Tetrablock Quarterpolymers. Macromolecules 2021; 54:7244-7257. [PMID: 35663800 PMCID: PMC9159653 DOI: 10.1021/acs.macromol.1c01186] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/01/2021] [Indexed: 11/30/2022]
Abstract
![]()
We
investigate for the first time the morphology and crystallization
of two novel tetrablock quarterpolymers of polyethylene (PE), poly(ethylene
oxide) (PEO), poly(ε-caprolactone) (PCL), and poly(l-lactide) (PLLA) with four potentially crystallizable blocks: PE187.1-b-PEO3715.1-b-PCL2610.4-b-PLLA197.6 (Q1) and PE299.5-b-PEO268.8-b-PCL237.6-b-PLLA227.3 (Q2) (superscripts give number average molecular weights
in kg/mol, and subscripts give the composition in wt %). Their synthesis
was performed by a combination of polyhomologation (C1 polymerization)
and ring-opening polymerization techniques using a ″catalyst-switch″
strategy, either ″organocatalyst/metal catalyst switch″
(Q1 sample, 96% isotactic tetrads) or ″organocatalyst/organocatalyst
switch″ (Q2 sample, 84% isotactic tetrads). Their corresponding
precursors—triblock terpolymers PE-b-PEO-b-PCL, diblock copolymers PE-b-PEO, and
PE homopolymers—were also studied. Cooling and heating rates
from the melt at 20 °C/min were employed for most experiments:
differential scanning calorimetry (DSC), polarized light optical microscopy
(PLOM), in situ small-angle X-ray scattering/wide-angle
X-ray scattering (SAXS/WAXS), and atomic force microscopy (AFM). The
direct comparison of the results obtained with these different techniques
allows the precise identification of the crystallization sequence
of the blocks upon cooling from the melt. SAXS indicated that Q1 is
melt miscible, while Q2 is weakly segregated in the melt but breaks
out during crystallization. According to WAXS and DSC results, the
blocks follow a sequence as they crystallize: PLLA first, then PE,
then PCL, and finally PEO in the case of the Q1 quarterpolymer; in
Q2, the PLLA block is not able to crystallize due to its low isotacticity.
Although the temperatures at which the PEO and PCL blocks and the
PE and PLLA blocks crystallize overlap, the analysis of the intensity
changes measured by WAXS and PLOM experiments allows identifying each
of the crystallization processes. The quarterpolymer Q1 remarkably
self-assembles during crystallization into tetracrystalline banded
spherulites, where four types of different lamellae coexist. Nanostructural
features arising upon sequential crystallization are found to have
a relevant impact on the mechanical properties. Nanoindentation measurements
show that storage modulus and hardness of the Q1 quarterpolymer significantly
deviate from those of the stiff PE and PLLA blocks, approaching typical
values of compliant PEO and PCL. Results are mainly attributed to
the low crystallinity of the PE and PLLA blocks. Moreover, the Q2
copolymer exhibits inferior mechanical properties than Q1, and this
can be related to the PE block within Q1 that has thinner crystal
lamellae according to its much lower melting point.
Collapse
Affiliation(s)
- Eider Matxinandiarena
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018 Donostia-San Sebastián, Spain
| | - Agurtzane Múgica
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018 Donostia-San Sebastián, Spain
| | - Agnieszka Tercjak
- Group ‘Materials + Technologies’, Department of Chemical and Environmental Engineering, University of the Basque Country, UPV/EHU, Plaza Europa 1, 20018 Donostia-San Sebastián, Spain
| | - Viko Ladelta
- Polymer Synthesis Laboratory, KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - George Zapsas
- Polymer Synthesis Laboratory, KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Nikos Hadjichristidis
- Polymer Synthesis Laboratory, KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Dario Cavallo
- Department of Chemistry and Industrial Chemistry, University of Genova, via Dodecaneso 31, 16146 Genova, Italy
| | - Araceli Flores
- Polymer Physics, Elastomers and Applications Energy, Institute of Polymer Science and Technology (ICTP-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Alejandro J. Müller
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| |
Collapse
|
4
|
Lv T, Li J, Huang S, Wen H, Li H, Chen J, Jiang S. Synergistic effects of chain dynamics and enantiomeric interaction on the crystallization in PDLA/PLLA mixtures. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123648] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Li X, Dong X, Zhou J, Bao J, Chen S, Lu W, Zhang X, Chen W. Confined crystallization and melting behaviors of poly(ethylene glycol) end‐functionalized by hydrogen bonding groups: Effect of contents for functional units. POLYMER CRYSTALLIZATION 2020. [DOI: 10.1002/pcr2.10158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Xiang Li
- School of Materials Science and Engineering Zhejiang Sci‐Tech University Hangzhou China
| | - Xiaolei Dong
- School of Materials Science and Engineering Zhejiang Sci‐Tech University Hangzhou China
| | - Jiale Zhou
- School of Materials Science and Engineering Zhejiang Sci‐Tech University Hangzhou China
| | - Jianna Bao
- School of Materials Science and Engineering Zhejiang Sci‐Tech University Hangzhou China
| | - Shichang Chen
- School of Materials Science and Engineering Zhejiang Sci‐Tech University Hangzhou China
| | - Wangyang Lu
- School of Materials Science and Engineering Zhejiang Sci‐Tech University Hangzhou China
| | - Xianming Zhang
- School of Materials Science and Engineering Zhejiang Sci‐Tech University Hangzhou China
| | - Wenxing Chen
- School of Materials Science and Engineering Zhejiang Sci‐Tech University Hangzhou China
| |
Collapse
|
6
|
Fractionated crystallization and fractionated melting behaviors of poly(ethylene glycol) induced by poly(lactide) stereocomplex in their block copolymers and blends. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122189] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
7
|
Bao J, Dong X, Chen S, Lu W, Zhang X, Chen W. Confined crystallization, melting behavior and morphology in PEG‐
b
‐PLA diblock copolymers: Amorphous versus crystalline PLA. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20190077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jianna Bao
- School of Materials Science and EngineeringZhejiang Sci‐Tech University Hangzhou China
| | - Xiaolei Dong
- School of Materials Science and EngineeringZhejiang Sci‐Tech University Hangzhou China
| | - Shichang Chen
- School of Materials Science and EngineeringZhejiang Sci‐Tech University Hangzhou China
| | - Wangyang Lu
- School of Materials Science and EngineeringZhejiang Sci‐Tech University Hangzhou China
| | - Xianming Zhang
- School of Materials Science and EngineeringZhejiang Sci‐Tech University Hangzhou China
| | - Wenxing Chen
- School of Materials Science and EngineeringZhejiang Sci‐Tech University Hangzhou China
| |
Collapse
|
8
|
Palacios JK, Liu G, Wang D, Hadjichristidis N, Müller AJ. Generating Triple Crystalline Superstructures in Melt Miscible PEO‐
b
‐PCL‐
b
‐PLLA Triblock Terpolymers by Controlling Thermal History and Sequential Crystallization. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201900292] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Jordana K. Palacios
- POLYMAT and Polymer Science and Technology DepartmentFaculty of ChemistryUniversity of the Basque Country UPV/EHU Paseo Manuel de Lardizabal 3 20018 Donostia‐San Sebastián Spain
| | - Guoming Liu
- Beijing National Laboratory for Molecular SciencesCAS Research/Education Center for Excellence in Molecular SciencesCAS Key Laboratory of Engineering PlasticsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Dujin Wang
- Beijing National Laboratory for Molecular SciencesCAS Research/Education Center for Excellence in Molecular SciencesCAS Key Laboratory of Engineering PlasticsInstitute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Nikos Hadjichristidis
- King Abdullah University of Science and TechnologyPhysical Sciences and Engineering DivisionKAUST Catalysis Center Thuwal 23955 Saudi Arabia
| | - Alejandro J. Müller
- POLYMAT and Polymer Science and Technology DepartmentFaculty of ChemistryUniversity of the Basque Country UPV/EHU Paseo Manuel de Lardizabal 3 20018 Donostia‐San Sebastián Spain
- IkerbasqueBasque Foundation for Science Bilbao 48013 Spain
| |
Collapse
|
9
|
Xiang S, Feng L, Bian X, Zhang B, Sun B, Liu Y, Li G, Chen X. Toughening modification of PLLA with PCL in the presence of PCL-b
-PLLA diblock copolymers as compatibilizer. POLYM ADVAN TECHNOL 2019. [DOI: 10.1002/pat.4530] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Sheng Xiang
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry, Chinese Academy of Sciences; Changchun China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun China
- University of the Chinese Academy of Sciences; Beijing China
| | - Lidong Feng
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry, Chinese Academy of Sciences; Changchun China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun China
| | - Xinchao Bian
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry, Chinese Academy of Sciences; Changchun China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun China
| | - Bao Zhang
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry, Chinese Academy of Sciences; Changchun China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun China
| | - Bin Sun
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry, Chinese Academy of Sciences; Changchun China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun China
| | - Yanlong Liu
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry, Chinese Academy of Sciences; Changchun China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun China
| | - Gao Li
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry, Chinese Academy of Sciences; Changchun China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials; Changchun Institute of Applied Chemistry, Chinese Academy of Sciences; Changchun China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun China
| |
Collapse
|
10
|
Van Horn RM, Steffen MR, O'Connor D. Recent progress in block copolymer crystallization. POLYMER CRYSTALLIZATION 2018. [DOI: 10.1002/pcr2.10039] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ryan M. Van Horn
- Department of Chemistry Allegheny College Meadville Pennsylvania
| | | | - Dana O'Connor
- Department of Chemistry Allegheny College Meadville Pennsylvania
| |
Collapse
|
11
|
Influence of Chain Architectures on Crystallization Behaviors of PLLA Block in PEG/PLLA Block Copolymers. CHINESE JOURNAL OF POLYMER SCIENCE 2018. [DOI: 10.1007/s10118-019-2202-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Microphase structure of polyurethane-polyurea copolymers as revealed by solid-state NMR: Effect of molecular architecture. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.07.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Huang M, Dong X, Wang L, Zheng L, Liu G, Gao X, Li C, Müller AJ, Wang D. Reversible Lamellar Periodic Structures Induced by Sequential Crystallization/Melting in PBS-co-PCL Multiblock Copolymer. Macromolecules 2018. [DOI: 10.1021/acs.macromol.7b01779] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Miaoming Huang
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory
of Engineering Plastics, CAS Research/Education Center for Excellence
in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Beijing Key Laboratory of Organic Materials Testing Technology and
Quality Evaluation, Beijing Engineering Research Center of Food Safety
Analysis, Beijing Center for Physical and Chemical Analysis, Beijing 100089, P. R. China
| | - Xia Dong
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory
of Engineering Plastics, CAS Research/Education Center for Excellence
in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Lili Wang
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory
of Engineering Plastics, CAS Research/Education Center for Excellence
in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Liuchun Zheng
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory
of Engineering Plastics, CAS Research/Education Center for Excellence
in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Guoming Liu
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory
of Engineering Plastics, CAS Research/Education Center for Excellence
in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Xia Gao
- Beijing Key Laboratory of Organic Materials Testing Technology and
Quality Evaluation, Beijing Engineering Research Center of Food Safety
Analysis, Beijing Center for Physical and Chemical Analysis, Beijing 100089, P. R. China
| | - Chuncheng Li
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory
of Engineering Plastics, CAS Research/Education Center for Excellence
in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Alejandro J. Müller
- POLYMAT and Polymer Science and Technology Department, Faculty of
Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel
de Lardizabal 3, Donostia-San Sebastián 20018, Spain
- IKERBASQUE, Basque
Foundation for Science, Bilbao, Spain
| | - Dujin Wang
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory
of Engineering Plastics, CAS Research/Education Center for Excellence
in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
14
|
Luo C, Yang M, Xiao W, Yang J, Wang Y, Chen W, Han X. Relationship between the crystallization behavior of poly(ethylene glycol) and stereocomplex crystallization of poly(L-lactic acid)/poly(D-lactic acid). POLYM INT 2018. [DOI: 10.1002/pi.5506] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Chunyan Luo
- School of Materials and Chemical Engineering; Xi'an Technological University; Xi'an China
| | - Minrui Yang
- School of Materials and Chemical Engineering; Xi'an Technological University; Xi'an China
| | - Wei Xiao
- School of Materials and Chemical Engineering; Xi'an Technological University; Xi'an China
| | - Jingjing Yang
- School of Materials and Chemical Engineering; Xi'an Technological University; Xi'an China
| | - Yan Wang
- School of Materials and Chemical Engineering; Xi'an Technological University; Xi'an China
| | - Weixing Chen
- School of Materials and Chemical Engineering; Xi'an Technological University; Xi'an China
| | - Xia Han
- Key Laboratory for Advanced Material and School of Chemistry and Molecular Engineering; East China University of Science and Technology; Shanghai China
| |
Collapse
|
15
|
Palacios JK, Zhao J, Hadjichristidis N, Müller AJ. How the Complex Interplay between Different Blocks Determines the Isothermal Crystallization Kinetics of Triple-Crystalline PEO-b-PCL-b-PLLA Triblock Terpolymers. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b02148] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jordana K. Palacios
- POLYMAT
and Polymer Science and Technology Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Junpeng Zhao
- Faculty
of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, People’s Republic of China
- Physical
Sciences and Engineering Division, KAUST Catalysis Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Nikos Hadjichristidis
- Physical
Sciences and Engineering Division, KAUST Catalysis Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Alejandro J. Müller
- POLYMAT
and Polymer Science and Technology Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
16
|
Palacios JK, Tercjak A, Liu G, Wang D, Zhao J, Hadjichristidis N, Müller AJ. Trilayered Morphology of an ABC Triple Crystalline Triblock Terpolymer. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01576] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | | | - Guoming Liu
- Beijing
National Laboratory for Molecular Sciences, CAS Key Laboratory of
Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Dujin Wang
- Beijing
National Laboratory for Molecular Sciences, CAS Key Laboratory of
Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Junpeng Zhao
- Faculty
of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Nikos Hadjichristidis
- Physical
Sciences and Engineering Division, KAUST Catalysis Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | | |
Collapse
|
17
|
Lv T, Zhou C, Li J, Huang S, Wen H, Meng Y, Jiang S. New insight into the mechanism of enhanced crystallization of PLA in PLLA/PDLA mixture. J Appl Polym Sci 2017. [DOI: 10.1002/app.45663] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Tongxin Lv
- School of Materials Science and Engineering; Tianjin University; Tianjin 300072 People's Republic of China
| | - Chengbo Zhou
- School of Materials Science and Engineering; Tianjin University; Tianjin 300072 People's Republic of China
| | - Jingqing Li
- School of Materials Science and Engineering; Tianjin University; Tianjin 300072 People's Republic of China
| | - Shaoyong Huang
- Key Laboratory of Polymer Eco-materials; Changchun Institute of Applied Chemistry, Chinese Academy of Sciences; Changchun 130022 People's Republic of China
| | - Huiying Wen
- College of Engineering and Technology; Northeast Forestry University; Harbin 150040 People's Republic of China
| | - Yanfeng Meng
- School of Chemistry and Materials Science; Ludong University; Yantai 264025 People's Republic of China
| | - Shichun Jiang
- School of Materials Science and Engineering; Tianjin University; Tianjin 300072 People's Republic of China
| |
Collapse
|
18
|
Zhou D, Huang S, Sun J, Bian X, Li G, Chen X. Unique Fractional Crystallization of Poly(l-lactide)/Poly(l-2-hydroxyl-3-methylbutanoic acid) Blend. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00855] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Dongdong Zhou
- Key
Laboratory of Polymer Ecomaterials, Changchun Institute of Applied
Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of
Chinese Academy of Sciences, Beijing 100049, China
| | - Shaoyong Huang
- Key
Laboratory of Polymer Ecomaterials, Changchun Institute of Applied
Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jingru Sun
- Key
Laboratory of Polymer Ecomaterials, Changchun Institute of Applied
Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xinchao Bian
- Key
Laboratory of Polymer Ecomaterials, Changchun Institute of Applied
Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Gao Li
- Key
Laboratory of Polymer Ecomaterials, Changchun Institute of Applied
Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xuesi Chen
- Key
Laboratory of Polymer Ecomaterials, Changchun Institute of Applied
Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| |
Collapse
|
19
|
Hossein Panahi F, Peighambardoust SJ, Davaran S, Salehi R. Development and characterization of PLA-mPEG copolymer containing iron nanoparticle-coated carbon nanotubes for controlled delivery of Docetaxel. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.03.084] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
20
|
Huang YF, Zhang ZC, Xu JZ, Xu L, Zhong GJ, He BX, Li ZM. Simultaneously improving wear resistance and mechanical performance of ultrahigh molecular weight polyethylene via cross-linking and structural manipulation. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.03.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
21
|
Arnal ML, Boissé S, Müller AJ, Meyer F, Raquez JM, Dubois P, Prud`homme RE. Interplay between poly(ethylene oxide) and poly(l-lactide) blocks during diblock copolymer crystallization. CrystEngComm 2016. [DOI: 10.1039/c6ce00330c] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|