1
|
Kyropoulou M, Yorulmaz Avsar S, Schoenenberger CA, Palivan CG, Meier WP. From spherical compartments to polymer films: exploiting vesicle fusion to generate solid supported thin polymer membranes. NANOSCALE 2021; 13:6944-6952. [PMID: 33885496 DOI: 10.1039/d1nr01122g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Solid supported polymer membranes as scaffold for the insertion of functional biomolecules provide the basis for mimicking natural membranes. They also provide the means for unraveling biomolecule-membrane interactions and engineering platforms for biosensing. Vesicle fusion is an established procedure to obtain solid supported lipid bilayers but the more robust polymer vesicles tend to resist fusion and planar membranes rarely form. Here, we build on vesicle fusion to develop a refined and efficient way to produce solid supported membranes based on poly(dimethylsiloxane)-poly(2-methyl-2-oxazoline) (PMOXA-b-PDMS-b-PMOXA) amphiphilic triblock copolymers. We first create thiol-bearing polymer vesicles (polymersomes) and anchor them on a gold substrate. An osmotic shock then provokes polymersome rupture and drives planar film formation. Prerequisite for a uniform amphiphilic planar membrane is the proper combination of immobilized polymersomes and osmotic shock conditions. Thus, we explored the impact of the hydrophobic PDMS block length of the polymersome on the formation and the characteristics of the resulting solid supported polymer assemblies by quarz crystal microbalance with dissipation monitoring (QCM-D), atomic force microscopy (AFM) and spectroscopic ellipsometry (SE). When the PDMS block is short enough, attached polymersomes restructure in response to osmotic shock, resulting in a uniform planar membrane. Our approach to rapidly form planar polymer membranes by vesicle fusion brings many advantages to the development of synthetic planar membranes for bio-sensing and biotechnological applications.
Collapse
Affiliation(s)
- Myrto Kyropoulou
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland.
| | | | | | | | | |
Collapse
|
2
|
Deng X, Liu H. Three-dimensional viscoelastic numerical analysis of the effects of gas flow on L-profiled polymers in gas-assisted coextrusion. JOURNAL OF POLYMER ENGINEERING 2017. [DOI: 10.1515/polyeng-2017-0161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
In this study, polymer gas-assisted coextrusion experiments were performed. The influence of a traditional coextrusion flow zone on the gas groove and the relationship between the gas pressure and the melt flow rate were studied. To determine the effects of the gas flow on gas-assisted coextrusion, a three-dimensional simulation was developed in which the gas layer was considered as an independent flow zone. The influence of the gas pressure, gas layer thickness and melt flow rate on the melts’ profile and the deflection deformation degree (DDD) was studied, and the relationship between the gas pressure, gas layer thickness and melt flow rate was obtained. The numerical results indicated that a traditional coextrusion flow zone in front of a gas-assisted coextrusion flow zone could allow products to avoid a gas groove. The quality of the products could be improved by decreasing the gas pressure and gas layer thickness or increasing the melt flow rate. Additionally, the minimum gas pressure decreased as the gas layer thickness increased and increased as the melt flow rate increased. The numerical results were in good agreement with the experimental results, despite a slight quantitative error. Therefore, reasonably controlling the gas flow condition is key in practical applications of gas-assisted coextrusion, and the effects of the gas layer should be considered in gas-assisted coextrusion simulations.
Collapse
Affiliation(s)
- Xiaozhen Deng
- Nanchang Institute of Technology , Jiangxi Province Key Laboratory of Precision Drive and Control , Nanchang 330099 , China
| | - Hesheng Liu
- Nanchang University , Polymer Processing Laboratory , Nanchang 330031 , China
| |
Collapse
|
3
|
Xu L, Chen Z, Zou Z. Dewetting of a pre-patterned thin polymer bilayer: influence of the instability mode. RSC Adv 2017. [DOI: 10.1039/c7ra03506c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Different surface structures are fabricated via adjusting the instability mode from a thermodynamically controlled one to a kinetically controlled one.
Collapse
Affiliation(s)
- Lin Xu
- Laboratory of Surface Physics and Chemistry
- Guizhou Education University
- Guiyang 550018
- P. R. China
| | - Zhengjian Chen
- Laboratory of Surface Physics and Chemistry
- Guizhou Education University
- Guiyang 550018
- P. R. China
| | - Zhiming Zou
- Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials
- College of Chemistry and Bioengineering
- Guilin University of Technology
- Guilin
- P. R. China
| |
Collapse
|
4
|
Zhang H, Xu L, Xu Y, Huang G, Zhao X, Lai Y, Shi T. Enhanced Self-Organized Dewetting of Ultrathin Polymer Blend Film for Large-Area Fabrication of SERS Substrate. Sci Rep 2016; 6:38337. [PMID: 27922062 PMCID: PMC5138605 DOI: 10.1038/srep38337] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 11/08/2016] [Indexed: 01/10/2023] Open
Abstract
We study the enhanced dewetting of ultrathin Polystyrene (PS)/Poly (methyl methacrylate) (PMMA) blend films in a mixed solution, and reveal the dewetting can act as a simple and effective method to fabricate large-area surface-enhanced Raman scattering (SERS) substrate. A bilayer structure consisting of under PMMA layer and upper PS layer forms due to vertical phase separation of immiscible PS/PMMA during the spin-coating process. The thicker layer of the bilayer structure dominates the dewetting structures of PS/PMMA blend films. The diameter and diameter distribution of droplets, and the average separation spacing between the droplets can be precisely controlled via the change of blend ratio and film thickness. The dewetting structure of 8 nm PS/PMMA (1:1 wt%) blend film is proved to successfully fabricate large-area (3.5 cm × 3.5 cm) universal SERS substrate via deposited a silver layer on the dewetting structure. The SERS substrate shows good SERS-signal reproducibility (RSD < 7.2%) and high enhancement factor (2.5 × 107). The enhanced dewetting of polymer blend films broadens the application of dewetting of polymer films, especially in the nanotechnology, and may open a new approach for the fabrication of large-area SERS substrate to promote the application of SERS substrate in the rapid sensitive detection of trace molecules.
Collapse
Affiliation(s)
- Huanhuan Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.,Laboratory of Surface Physics and Chemistry, Guizhou Education University, Guiyang 550018, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Lin Xu
- Laboratory of Surface Physics and Chemistry, Guizhou Education University, Guiyang 550018, P. R. China
| | - Yabo Xu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Gang Huang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xueyu Zhao
- School of Chemistry and Life Sciences, Guizhou Education University, Guiyang 550018, P. R. China
| | - Yuqing Lai
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Tongfei Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| |
Collapse
|