1
|
Zou H, Wang S, Han C, Hu M, Chu B, Zhou L. Helical Polymer-Containing Bottlebrush Polymers (BBPs): Design, Synthesis, and Perspectives. Macromol Rapid Commun 2025; 46:e2400985. [PMID: 39911003 DOI: 10.1002/marc.202400985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/24/2025] [Indexed: 02/07/2025]
Abstract
Helical polymer-containing bottlebrush polymers (BBPs) are a special and fascinating type of polymer. They possess bottlebrush topology and contain helical polymers as main chains (MCs) or side chains (SCs), thereby presenting interesting and fantastic properties, such as chiral amplification, circularly polarized luminescence, photonic crystal, and so on. This review mainly focuses on BBPs containing helical polymers of polypeptides, polyacetylenes (PAs), and polyisocyanides (PIs). Detailed summarizations are severally given to BBPs with helical polypeptides as MCs and SCs. Meanwhile, BBPs comprising helical PAs as MCs are fully discussed. What's more, BBPs consisted of helical PIs as MCs and SCs are described separately. In addition, BBPs with other helical polymers are briefly introduced, too. The authors hope this review will motivate more interest in developing helical polymers with complex topologies and fascinating properties, and encourage further progress in functional chiral materials.
Collapse
Affiliation(s)
- Hui Zou
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Province Key Laboratory of Value-Added Catalytic Conversion and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui Province, 230009, China
| | - Shiqi Wang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Province Key Laboratory of Value-Added Catalytic Conversion and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui Province, 230009, China
| | - Chaofan Han
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Province Key Laboratory of Value-Added Catalytic Conversion and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui Province, 230009, China
| | - Menghao Hu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Province Key Laboratory of Value-Added Catalytic Conversion and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui Province, 230009, China
| | - Benfa Chu
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan, Anhui Province, 232001, China
| | - Li Zhou
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Province Key Laboratory of Value-Added Catalytic Conversion and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui Province, 230009, China
| |
Collapse
|
2
|
Masuda T, Takai M. Design of biointerfaces composed of soft materials using controlled radical polymerizations. J Mater Chem B 2022; 10:1473-1485. [PMID: 35044413 DOI: 10.1039/d1tb02508b] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Soft interface materials have an immense potential for the improvement of biointerfaces, which are the interface of biological and artificially designed materials. Controlling the chemical and physical structures of the interfaces at the nanometer level plays an important role in understanding the mechanism of the functioning and its applications. Controlled radical polymerization (CRP) techniques, including atom transfer radical polymerization (ATRP) and reversible addition-fragmentation chain-transfer (RAFT) polymerization, have been developed in the field of precision polymer chemistry. It allows the formation of well-defined surfaces such as densely packed polymer brushes and self-assembled nanostructures of block copolymers. More recently, a novel technique to prepare polymers containing biomolecules, called biohybrids, has also been developed, which is a consequence of the advancement of CRP so as to proceed in an aqueous media with oxygen. This review article summarizes recent advances in CRP for the design of biointerfaces.
Collapse
Affiliation(s)
- Tsukuru Masuda
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| | - Madoka Takai
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| |
Collapse
|
3
|
Lomadze N, Kopyshev A, Bargheer M, Wollgarten M, Santer S. Mass production of polymer nano-wires filled with metal nano-particles. Sci Rep 2017; 7:8506. [PMID: 28819103 PMCID: PMC5561068 DOI: 10.1038/s41598-017-08153-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 07/06/2017] [Indexed: 11/30/2022] Open
Abstract
Despite the ongoing progress in nanotechnology and its applications, the development of strategies for connecting nano-scale systems to micro- or macroscale elements is hampered by the lack of structural components that have both, nano- and macroscale dimensions. The production of nano-scale wires with macroscale length is one of the most interesting challenges here. There are a lot of strategies to fabricate long nanoscopic stripes made of metals, polymers or ceramics but none is suitable for mass production of ordered and dense arrangements of wires at large numbers. In this paper, we report on a technique for producing arrays of ordered, flexible and free-standing polymer nano-wires filled with different types of nano-particles. The process utilizes the strong response of photosensitive polymer brushes to irradiation with UV-interference patterns, resulting in a substantial mass redistribution of the polymer material along with local rupturing of polymer chains. The chains can wind up in wires of nano-scale thickness and a length of up to several centimeters. When dispersing nano-particles within the film, the final arrangement is similar to a core-shell geometry with mainly nano-particles found in the core region and the polymer forming a dielectric jacket.
Collapse
Affiliation(s)
- Nino Lomadze
- Department of Experimental Physics, Institute of Physics and Astronomy, University of Potsdam, 14476, Potsdam, Germany
| | - Alexey Kopyshev
- Department of Experimental Physics, Institute of Physics and Astronomy, University of Potsdam, 14476, Potsdam, Germany
| | - Matias Bargheer
- Department of Ultrafast Dynamics in Condensed Matter, Institute of Physics and Astronomy, University of Potsdam, 14476, Potsdam, Germany
| | - Markus Wollgarten
- Helmholtz Zentrum Berlin für Materialien und Energie GmbH, Department Nanoscale Structures and Microscopic Analysis, Hahn-Meitner-Platz 1, 14109, Berlin, Germany
| | - Svetlana Santer
- Department of Experimental Physics, Institute of Physics and Astronomy, University of Potsdam, 14476, Potsdam, Germany.
| |
Collapse
|