1
|
Duan QY, Zhu YX, Jia HR, Wang SH, Wu FG. Nanogels: Synthesis, properties, and recent biomedical applications. PROGRESS IN MATERIALS SCIENCE 2023; 139:101167. [DOI: 10.1016/j.pmatsci.2023.101167] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
2
|
Ding T, Liu R, Yan X, Zhang Z, Xiong F, Li X, Wu Z. An electrochemically mediated ATRP synthesis of lignin-g-PDMAPS UCST-thermoresponsive polymer. Int J Biol Macromol 2023; 241:124458. [PMID: 37076067 DOI: 10.1016/j.ijbiomac.2023.124458] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/25/2023] [Accepted: 04/11/2023] [Indexed: 04/21/2023]
Abstract
It is a promising idea to graft zwitterionic polymers onto lignin and prepare lignin-grafted-poly [2-(methacryloyloxy) ethyl] dimethyl-(3-sulfopropyl) ammonium hydroxide (Lignin-g-PDMAPS) thermosensitive polymer with the upper critical solution temperature (UCST). In this paper, an electrochemically mediated atom transfer radical polymerization (eATRP) method was used to prepare Lignin-g-PDMAPS. The structure and property of the Lignin-g-PDMAPS polymer were characterized by the fourier transform infrared spectrum (FT-IR), nuclear magnetic resonance (NMR), X-ray electron spectroscopy (XPS), dynamic light scattering (DLS), differential scanning calorimeter (DSC). Furthermore, the effect of catalyst structure, applied potential, amount of Lignin-Br, Lignin-g-PDMAPS concentration, NaCl concentration on UCST of Lignin-g-PDMAPS were investigated. It was worth noting that polymerization was well controlled when the ligand was tris (2-aminoethyl) amine (Me6TREN), applied potential was -0.38 V and the amount of Lignin-Br was 100 mg. And the UCST of the Lignin-g-PDMAPS aqueous solution (1 mg/ml) was 51.47 °C, the molecular weight was 8987 g/mol, and the particle size was 318 nm. It was also found that the UCST increased and the particle size decreased with the Lignin-g-PDMAPS polymer concentration increased, and the UCST decreased and the particle size increased with the NaCl concentration increases. This work investigated UCST-thermoresponsive polymer which possessed lignin main chain combining the zwitterionic side chain, and provided a new way for development of lignin based UCST-thermoresponsive materials and medical carrier materials, in addition to expand the scope of eATRP.
Collapse
Affiliation(s)
- Tingting Ding
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Ruixia Liu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Xiaofan Yan
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Zuoyu Zhang
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Fuquan Xiong
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Xingong Li
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Zhiping Wu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| |
Collapse
|
3
|
Cai S, Li X, Pu S, Ma X, He X. Preparation of poly(acrylamide-co-Acrylonitrile) thermosensitivity microgel and control release of aspirin. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2090355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2022]
Affiliation(s)
- Shuwei Cai
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, China
| | - Xian Li
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, China
| | - Shijie Pu
- Research Institute of Oil Production Technology, No.1 Oil Production Plant of Qinghai Oilfield, CNPC, Haidong, Qinghai Province, China
| | - Xinyu Ma
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, China
| | - Xianru He
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, China
| |
Collapse
|
4
|
Wang Y, Liu Y, Su Q, Li Y, Deng L, Dong L, Fu M, Liu S, Cheng W. Poly(ionic liquid) materials tailored by carboxyl groups for the gas phase-conversion of epoxide and CO2 into cyclic carbonates. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.101976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
5
|
Tang Y, Cao P, Li W, He M, Dai Z, Xiong Y. Redox-responsive poly(ionic liquid) microgels explored as the building blocks for supramolecular assembly. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
6
|
Gou H, Ma X, Su Q, Liu L, Ying T, Qian W, Dong L, Cheng W. Hydrogen bond donor functionalized poly(ionic liquid)s for efficient synergistic conversion of CO 2 to cyclic carbonates. Phys Chem Chem Phys 2021; 23:2005-2014. [PMID: 33443524 DOI: 10.1039/d0cp06041k] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of metal-free, high effective and recyclable catalysts plays a pivotal role in transforming CO2 into high value-added products such as cyclic carbonates. In this paper, we introduced the hydrogen bond donor (HBD) groups into poly(ionic liquid)s via free radical polymerization, which successfully combined the HBD and ionic liquids (ILs) into one heterogeneous catalyst. The HBD could synergistically activate epoxides with hydroxyl functionalized ionic liquids and efficiently catalyze the cycloaddition of CO2 into cyclic carbonates. The yield of propylene carbonate (PC) reached 94% (at 105 °C, 2 MPa CO2, 3 h), which far exceeded poly(ionic liquid)s without HBDs functionalization (PC yield 72%), and even approached bulk ionic liquids (PC yield 95%). Moreover, HBD-functionalized poly(ionic liquid)s (HPILs) exhibited excellent recyclability after five runs and afforded wide substrate scope. According to the experimental results, 1H NMR spectra and density functional theory (DFT) calculations showed 2-hydroxyethyl methacrylate (HEMA) and the hydroxyl of ILs would form strong H-bonds with epoxides contributing to the ring-opening process of epoxides, and a possible HBD and nucleophilic anion synergistically catalytic mechanism was proposed. The method herein paved a brand new way for green technology and utilization of poly(ionic liquid)s.
Collapse
Affiliation(s)
- Haibin Gou
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Ghaeini-Hesaroeiye S, Razmi Bagtash H, Boddohi S, Vasheghani-Farahani E, Jabbari E. Thermoresponsive Nanogels Based on Different Polymeric Moieties for Biomedical Applications. Gels 2020; 6:E20. [PMID: 32635573 PMCID: PMC7559285 DOI: 10.3390/gels6030020] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/21/2020] [Accepted: 06/25/2020] [Indexed: 12/16/2022] Open
Abstract
Nanogels, or nanostructured hydrogels, are one of the most interesting materials in biomedical engineering. Nanogels are widely used in medical applications, such as in cancer therapy, targeted delivery of proteins, genes and DNAs, and scaffolds in tissue regeneration. One salient feature of nanogels is their tunable responsiveness to external stimuli. In this review, thermosensitive nanogels are discussed, with a focus on moieties in their chemical structure which are responsible for thermosensitivity. These thermosensitive moieties can be classified into four groups, namely, polymers bearing amide groups, ether groups, vinyl ether groups and hydrophilic polymers bearing hydrophobic groups. These novel thermoresponsive nanogels provide effective drug delivery systems and tissue regeneration constructs for treating patients in many clinical applications, such as targeted, sustained and controlled release.
Collapse
Affiliation(s)
- Sobhan Ghaeini-Hesaroeiye
- Biomedical Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran 14115, Iran; (S.G.-H.); (H.R.B.)
| | - Hossein Razmi Bagtash
- Biomedical Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran 14115, Iran; (S.G.-H.); (H.R.B.)
| | - Soheil Boddohi
- Biomedical Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran 14115, Iran; (S.G.-H.); (H.R.B.)
| | - Ebrahim Vasheghani-Farahani
- Biomedical Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran 14115, Iran; (S.G.-H.); (H.R.B.)
| | - Esmaiel Jabbari
- Biomimetic Materials and Tissue Engineering Laboratory, Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA;
| |
Collapse
|
8
|
Potaufeux JE, Odent J, Notta-Cuvier D, Lauro F, Raquez JM. A comprehensive review of the structures and properties of ionic polymeric materials. Polym Chem 2020. [DOI: 10.1039/d0py00770f] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This review focuses on the mechanistic approach, the structure–property relationship and applications of ionic polymeric materials.
Collapse
Affiliation(s)
- Jean-Emile Potaufeux
- Laboratory of Polymeric and Composite Materials (LPCM)
- Center of Innovation and Research in Materials and Polymers (CIRMAP)
- University of Mons (UMONS)
- Mons
- Belgium
| | - Jérémy Odent
- Laboratory of Polymeric and Composite Materials (LPCM)
- Center of Innovation and Research in Materials and Polymers (CIRMAP)
- University of Mons (UMONS)
- Mons
- Belgium
| | - Delphine Notta-Cuvier
- Laboratory of Industrial and Human Automatic Control and Mechanical Engineering (LAMIH)
- UMR CNRS 8201
- University Polytechnique Hauts-De-France (UPHF)
- Le Mont Houy
- France
| | - Franck Lauro
- Laboratory of Industrial and Human Automatic Control and Mechanical Engineering (LAMIH)
- UMR CNRS 8201
- University Polytechnique Hauts-De-France (UPHF)
- Le Mont Houy
- France
| | - Jean-Marie Raquez
- Laboratory of Polymeric and Composite Materials (LPCM)
- Center of Innovation and Research in Materials and Polymers (CIRMAP)
- University of Mons (UMONS)
- Mons
- Belgium
| |
Collapse
|
9
|
Xi T, Lu Y, Ai X, Tang L, Yao L, Hao W, Cui P. Ionic liquid copolymerized polyurethane membranes for pervaporation separation of benzene/cyclohexane mixtures. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.121948] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
10
|
Sponchioni M, Rodrigues Bassam P, Moscatelli D, Arosio P, Capasso Palmiero U. Biodegradable zwitterionic nanoparticles with tunable UCST-type phase separation under physiological conditions. NANOSCALE 2019; 11:16582-16591. [PMID: 31460534 DOI: 10.1039/c9nr04311j] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Thermo-responsive polymeric nanoparticles (NPs) are emerging as a powerful tool in nanomedicine for the fabrication of advanced drug delivery systems. In addition to their size and biodegradation rate, phase separation of NPs upon application of a thermal stimulus provides an additional switch to control the rate of release of active components. Among the materials currently developed for biomedical applications, NPs stabilized by zwitterionic polymers are gaining increasing interest due to their high stability and ability to escape the body immune response. Yet, biodegradable zwitterionic NPs with temperature response under physiological conditions are currently not available. Here, we develop a new class of biodegradable zwitterionic NPs that exhibit UCST phase transition in the biological temperature range (T = 30-45 °C) and in physiological solution (i.e. 0.9% w/w NaCl). We design a strategy that relies on the self-assembly of block copolymers produced via reversible addition-fragmentation chain transfer (RAFT) emulsion polymerization. These copolymers comprise a zwitterionic portion exhibiting an upper critical solution temperature (UCST) and a biodegradable hydrophobic block consisting of oligoesters functionalized with a vinyl group. This modular macromolecular architecture allows us to independently control a variety of NP properties by modifying the individual components of the copolymer. In particular, the zwitterionic block of the copolymers controls the UCST-type phase separation behavior, while the number of the oligoester repeating units governs the size of the NPs and the length of the oligoester dictates the degradation rate. After demonstrating the synthesis of highly controlled degradable NPs, we show the potential of this new class of materials in the context of drug delivery by controlling the release of a drug-mimic molecule upon temperature variations in a broad time range from few minutes to 20 hours.
Collapse
Affiliation(s)
- Mattia Sponchioni
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland. and Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Mancinelli 7, 20131 Milano, Italy
| | - Paola Rodrigues Bassam
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Mancinelli 7, 20131 Milano, Italy
| | - Davide Moscatelli
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via Mancinelli 7, 20131 Milano, Italy
| | - Paolo Arosio
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland.
| | - Umberto Capasso Palmiero
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland.
| |
Collapse
|
11
|
Enhancement of catalytic performance of porcine pancreatic lipase immobilized on functional ionic liquid modified Fe3O4-Chitosan nanocomposites. Int J Biol Macromol 2018; 119:624-632. [DOI: 10.1016/j.ijbiomac.2018.07.187] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/24/2018] [Accepted: 07/29/2018] [Indexed: 02/05/2023]
|
12
|
Chen X, Liu X, Miao C, Song P, Xiong Y. Ionic liquid-like inimer mediated RAFT polymerization of N-isopropylacrylamide. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.08.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
13
|
Hao L, Yegin C, Talari JV, Oh JK, Zhang M, Sari MM, Zhang L, Min Y, Akbulut M, Jiang B. Thermo-responsive gels based on supramolecular assembly of an amidoamine and citric acid. SOFT MATTER 2018; 14:432-439. [PMID: 29261211 DOI: 10.1039/c7sm01592e] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this work, we report the formation of a novel, aqueous-based thermo-responsive, supramolecular gelling system prepared by a convenient and efficient self-assembly of a long-chain amino-amide and citric acid. To determine the viscosity behavior and to gain insights into the gelation mechanism, a complementary combination of techniques, including Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), dynamic light scattering (DLS), and sinusoidal oscillatory tests, were used. The supramolecular gelator exhibited remarkably reversible sol-gel transitions induced by temperature at 76 °C. At a concentration of 5 wt%, the zero-frequency viscosity of the supramolecular system increased by about four orders of magnitude (from 4.2 to 12 563 Pa s) by changing the temperature from 23 °C to 76 °C. The viscous nature of the supramolecular gel could be preserved up to 90 °C. The synergistic combination of the hydrogen bonding between amino and carboxylic acid groups and the electrostatic interactions arising from the protonation of the amino-group and the deprotonation of carboxylic acid groups enhanced at higher temperatures is presumably responsible for the thermo-responsive behavior. We anticipate that these supramolecular gelators can be beneficial in various applications such as hydrogel scaffolds for regenerative medicine, personal care products and cosmetics, and enhanced oil recovery as viscosity modifiers.
Collapse
Affiliation(s)
- Li Hao
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843-3122, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Mackiewicz M, Stojek Z, Karbarz M. Unusual swelling behavior of core-shell microgels built from polymers exhibiting lower critical solubility temperature. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2017.08.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
|