1
|
Lang W, Watanabe T, Lee C, Fukushima S, Li F, Yamamoto T, Tajima K, Tagami T, Borsali R, Takahashi K, Satoh T, Isono T. Self-assembly of malto-oligosaccharide-block-solanesol in aqueous solutions: Investigating morphology and sugar-based physiological compatibility. Carbohydr Polym 2025; 352:123207. [PMID: 39843108 DOI: 10.1016/j.carbpol.2024.123207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/29/2024] [Accepted: 12/30/2024] [Indexed: 01/30/2025]
Abstract
Starch-derived hydrophilic malto-oligosaccharides (Glcn, where n = 1-7) conjugated to hydrophobic solanesol through click chemistry, i.e., Glcn-b-Sol copolymers, have demonstrated significant promise in developing fully natural block co-oligomers for solid-state nanopatterning applications. This study explores in detail the solution self-assembly, lectin recognition, and pancreatic digestion of Glc6- and Glc7-b-Sol. Above a critical micelle concentration (CMC) of 0.3 g/L, both systems demonstrated self-assembly into diverse morphologies. Using the pyrene probe method, a polarity parameter of 1.2 was observed at 1 mM samples. Dynamic light scattering experiments, which measured autocorrelation functions and relaxation times at various angles, revealed the anisotropic and heterogeneous characteristics of the morphologies. Specifically, Glc6-b-Sol predominantly exhibited spherical and elongated worm-like micelles with considerable heterogeneity across the entire range of concentrations studied. In contrast, Glc7-b-Sol primarily formed stable, shorter, worm-like structures at lower concentrations, as observed by transmission electron microscopy. However, small-angle X-ray scattering showed that higher concentrations led to the formation of longer worm-like structures, with Glc7-b-Sol forming thicker diameters. Notably, interaction with Concanavalin A above the CMC resulted in complete agglutination. Pancreatic digestion with hog pancreas α-amylase resulted in morphological alterations, with Glc3- and Glc4-b-Sol emerging as the primary digestion products for Glc6- and Glc7-b-Sol, respectively.
Collapse
Affiliation(s)
- Weeranuch Lang
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Tomohisa Watanabe
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Chaehun Lee
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Sho Fukushima
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Feng Li
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Takuya Yamamoto
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Kenji Tajima
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Takayoshi Tagami
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | | | - Kenji Takahashi
- Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Kanazawa 920-1192, Japan
| | - Toshifumi Satoh
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan; ICReDD List-PF, Hokkaido University, N21W10, Kita-ku, Sapporo 001-0021, Japan; Department of Chemical & Materials Engineering, National Central University, Taoyuan 320317, Taiwan.
| | - Takuya Isono
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan.
| |
Collapse
|
2
|
Stepanova M, Nikiforov A, Tennikova T, Korzhikova-Vlakh E. Polypeptide-Based Systems: From Synthesis to Application in Drug Delivery. Pharmaceutics 2023; 15:2641. [PMID: 38004619 PMCID: PMC10674432 DOI: 10.3390/pharmaceutics15112641] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/02/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
Synthetic polypeptides are biocompatible and biodegradable macromolecules whose composition and architecture can vary over a wide range. Their unique ability to form secondary structures, as well as different pathways of modification and biofunctionalization due to the diversity of amino acids, provide variation in the physicochemical and biological properties of polypeptide-containing materials. In this review article, we summarize the advances in the synthesis of polypeptides and their copolymers and the application of these systems for drug delivery in the form of (nano)particles or hydrogels. The issues, such as the diversity of polypeptide-containing (nano)particle types, the methods for their preparation and drug loading, as well as the influence of physicochemical characteristics on stability, degradability, cellular uptake, cytotoxicity, hemolysis, and immunogenicity of polypeptide-containing nanoparticles and their drug formulations, are comprehensively discussed. Finally, recent advances in the development of certain drug nanoformulations for peptides, proteins, gene delivery, cancer therapy, and antimicrobial and anti-inflammatory systems are summarized.
Collapse
Affiliation(s)
- Mariia Stepanova
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (M.S.); (A.N.)
| | - Alexey Nikiforov
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (M.S.); (A.N.)
| | - Tatiana Tennikova
- Institute of Chemistry, Saint-Petersburg State University, Universitetskiy pr. 26, Petergof, 198504 St. Petersburg, Russia
| | - Evgenia Korzhikova-Vlakh
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 St. Petersburg, Russia; (M.S.); (A.N.)
| |
Collapse
|
3
|
Sedighi M, Mahmoudi Z, Ghasempour A, Shakibaie M, Ghasemi F, Akbari M, Abbaszadeh S, Mostafavi E, Santos HA, Shahbazi MA. Nanostructured multifunctional stimuli-responsive glycopolypeptide-based copolymers for biomedical applications. J Control Release 2023; 354:128-145. [PMID: 36599396 DOI: 10.1016/j.jconrel.2022.12.058] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023]
Abstract
Inspired by natural resources, such as peptides and carbohydrates, glycopolypeptide biopolymer has recently emerged as a new form of biopolymer being recruited in various biomedical applications. Glycopolypeptides with well-defined secondary structures and pendant glycosides on the polypeptide backbone have sparked lots of research interest and they have an innate ability to self-assemble in diverse structures. The nanostructures of glycopolypeptides have also opened up new perspectives in biomedical applications due to their stable three-dimensional structures, high drug loading efficiency, excellent biocompatibility, and biodegradability. Although the development of glycopolypeptide-based nanocarriers is well-studied, their clinical translation is still limited. The present review highlights the preparation and characterization strategies related to glycopolypeptides-based copolymers, followed by a comprehensive discussion on their biomedical applications with a specific focus on drug delivery by various stimuli-responsive (e.g., pH, redox, conduction, and sugar) nanostructures, as well as their beneficial usage in diagnosis and regenerative medicine.
Collapse
Affiliation(s)
- Mahsa Sedighi
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran; Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Zahra Mahmoudi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Ghasempour
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Mehdi Shakibaie
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran; Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Fahimeh Ghasemi
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran; Department of Medical Biotechnology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mahsa Akbari
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, 45139-56184 Zanjan, Iran
| | - Samin Abbaszadeh
- Department of Pharmacology, School of Medicine, Zanjan University of Medical Sciences, 45139-56111 Zanjan, Iran
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Hélder A Santos
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, Netherlands; W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands; Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland.
| | - Mohammad-Ali Shahbazi
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, Netherlands; W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands.
| |
Collapse
|
4
|
Dzhuzha AY, Tarasenko II, Atanase LI, Lavrentieva A, Korzhikova-Vlakh EG. Amphiphilic Polypeptides Obtained by the Post-Polymerization Modification of Poly(Glutamic Acid) and Their Evaluation as Delivery Systems for Hydrophobic Drugs. Int J Mol Sci 2023; 24:ijms24021049. [PMID: 36674566 PMCID: PMC9864831 DOI: 10.3390/ijms24021049] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/12/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Synthetic poly(amino acids) are a unique class of macromolecules imitating natural polypeptides and are widely considered as carriers for drug and gene delivery. In this work, we synthesized, characterized and studied the properties of amphiphilic copolymers obtained by the post-polymerization modification of poly(α,L-glutamic acid) with various hydrophobic and basic L-amino acids and D-glucosamine. The resulting glycopolypeptides were capable of forming nanoparticles that exhibited reduced macrophage uptake and were non-toxic to human lung epithelial cells (BEAS-2B). Moreover, the developed nanoparticles were suitable for loading hydrophobic cargo. In particular, paclitaxel nanoformulations had a size of 170-330 nm and demonstrated a high cytostatic efficacy against human lung adenocarcinoma (A549). In general, the obtained nanoparticles were comparable in terms of their characteristics and properties to those based on amphiphilic (glyco)polypeptides obtained by copolymerization methods.
Collapse
Affiliation(s)
- Apollinariia Yu. Dzhuzha
- Institute of Chemistry, Saint-Petersburg State University, 198504 St. Petersburg, Russia
- Institute of Macromolecular Compounds, Russian Academy of Sciences, 199004 St. Petersburg, Russia
| | - Irina I. Tarasenko
- Institute of Macromolecular Compounds, Russian Academy of Sciences, 199004 St. Petersburg, Russia
| | | | - Antonina Lavrentieva
- Institute of Technical Chemistry, Gottfried-Wilhelm-Leibniz University, 30167 Hannover, Germany
| | - Evgenia G. Korzhikova-Vlakh
- Institute of Macromolecular Compounds, Russian Academy of Sciences, 199004 St. Petersburg, Russia
- Correspondence:
| |
Collapse
|
5
|
Pelras T, Loos K. Strategies for the synthesis of sequence-controlled glycopolymers and their potential for advanced applications. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101393] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
6
|
Functional Glycopolypeptides: Synthesis and Biomedical Applications. ADVANCES IN POLYMER TECHNOLOGY 2020. [DOI: 10.1155/2020/6052078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Employing natural-based renewable sugar and saccharide resources to construct functional biopolymer mimics is a promising research frontier for green chemistry and sustainable biotechnology. As the mimics/analogues of natural glycoproteins, synthetic glycopolypeptides attracted great attention in the field of biomaterials and nanobiotechnology. This review describes the synthetic strategies and methods of glycopolypeptides and their analogues, the functional self-assemblies of the synthesized glycopolypeptides, and their biological applications such as biomolecular recognition, drug/gene delivery, and cell adhesion and targeting, as well as cell culture and tissue engineering. Future outlook of the synthetic glycopolypeptides was also discussed.
Collapse
|
7
|
Arcens D, Le Fer G, Grau E, Grelier S, Cramail H, Peruch F. Chemo-enzymatic synthesis of glycolipids, their polymerization and self-assembly. Polym Chem 2020. [DOI: 10.1039/d0py00526f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
This paper describes the synthesis of bio-based methacrylated 12-hydroxystearate glucose (MASG), and its (co)polymerization with methyl methacrylate (MMA) by either free- or RAFT radical polymerizations.
Collapse
|
8
|
Song Z, Tan Z, Cheng J. Recent Advances and Future Perspectives of Synthetic Polypeptides from N-Carboxyanhydrides. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01450] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ziyuan Song
- Department of Materials Science and Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Zhengzhong Tan
- Department of Materials Science and Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Jianjun Cheng
- Department of Materials Science and Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
9
|
Martin L, Gurnani P, Zhang J, Hartlieb M, Cameron NR, Eissa AM, Perrier S. Polydimethylsiloxane-Based Giant Glycosylated Polymersomes with Tunable Bacterial Affinity. Biomacromolecules 2019; 20:1297-1307. [PMID: 30694656 DOI: 10.1021/acs.biomac.8b01709] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A synthetic cell mimic in the form of giant glycosylated polymersomes (GGPs) comprised of a novel amphiphilic diblock copolymer is reported. A synthetic approach involving a poly(dimethylsiloxane) (PDMS) macro-chain transfer agent (macroCTA) and postpolymerization modification was used to marry the hydrophobic and highly flexible properties of PDMS with the biological activity of glycopolymers. 2-Bromoethyl acrylate (BEA) was first polymerized using a PDMS macroCTA ( Mn,th ≈ 4900 g·mol-1, Đ = 1.1) to prepare well-defined PDMS- b-pBEA diblock copolymers ( Đ = 1.1) that were then substituted with 1-thio-β-d-glucose or 1-thio-β-d-galactose under facile conditions to yield PDMS- b-glycopolymers. Compositions possessing ≈25% of the glycopolymer block (by mass) were able to adopt a vesicular morphology in aqueous solution (≈210 nm in diameter), as indicated by TEM and light scattering techniques. The resulting carbohydrate-decorated polymersomes exhibited selective binding with the lectin concanavalin A (Con A), as demonstrated by turbidimetric experiments. Self-assembly of the same diblock copolymer compositions using an electroformation method yielded GGPs (ranging from 2-20 μm in diameter). Interaction of these cell-sized polymersomes with fimH positive E. coli was then studied via confocal microscopy. The glucose-decorated GGPs were found to cluster upon addition of the bacteria, while galactose-decorated GGPs could successfully interact with (and possibly immobilize) the bacteria without the onset of clustering. This demonstrates an opportunity to modulate the response of these synthetic cell mimics (protocells) toward biological entities through exploitation of selective ligand-receptor interactions, which may be readily tuned through a considered choice of carbohydrate functionality.
Collapse
Affiliation(s)
| | | | | | | | - Neil R Cameron
- Department of Materials Science and Engineering , Monash University , Clayton , VIC 3800 , Australia
| | - Ahmed M Eissa
- Department of Polymers, Chemical Industries Research Division , National Research Centre (NRC) , El-Bohouth Street , Dokki , 12622 , Cairo , Egypt
| | - Sébastien Perrier
- Faculty of Pharmacy and Pharmaceutical Sciences , Monash University , Clayton , VIC 3052 , Australia
| |
Collapse
|
10
|
Yang H, Wang N, Mo L, Wu M, Yang R, Xu X, Huang Y, Lin J, Zhang LM, Jiang X. Reduction sensitive hyaluronan-SS-poly(ε-caprolactone) block copolymers as theranostic nanocarriers for tumor diagnosis and treatment. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 98:9-18. [PMID: 30813097 DOI: 10.1016/j.msec.2018.12.132] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 12/06/2018] [Accepted: 12/28/2018] [Indexed: 12/15/2022]
Abstract
Tumor-targeted multifunctional nanocarriers play an important role in tumor diagnosis and treatment. Herein, disulfide bonds linked amphiphilic hyaluronan-SS-poly(ε-caprolactone) diblock copolymers (HA-SS-PCL) were synthesized and studied as theranostic nanocarriers for tumor diagnosis and treatment. The chemical structure of HA-SS-PCL was confirmed by Fourier transform infrared spectroscopy (FTIR) and proton nuclear magnetic resonance (1H NMR). The self-assembling behavior of the HA-SS-PCL into GSH-responsive micelles and their degradation were characterized by fluorescence spectroscopy, dynamic light scattering (DLS) and transmission electron microscopy (TEM). Theranostic nanocarriers encapsulating doxorubicin (DOX) and superparamagnetic iron oxide (SPIO) were formed via a dialysis. In vitro drug release results suggested that the HA-SS-PCL micelles possessed reductant-triggered doxorubicin release ability, which was confirmed by 100% of DOX release from HA-SS-PCL micelles within 12 h under 10 mM of glutathione (GSH), whereas about 40% of DOX was released under non-reductive condition within 24 h. Both flow cytometry and confocal laser scanning microscopy (CLSM) analysis revealed that the HA-SS-PCL micelles loaded with DOX were internalized in HepG2 cell via a receptor mediated mechanism between hyaluronan and the CD44 receptor. Furthermore, the MTT assay and cell apoptosis analysis revealed that the DOX-loaded HA-SS-PCL micelles exhibited pronounced antitumor ability towards HepG2 cells compared with that of the reduction-insensitive HA-PCL micelles at the same DOX dosage. The r2 relaxivity value of the DOX/SPIO loaded HA-SS-PCL micelles was up to 221.2 mM-1 s-1 (Fe). Thus, the obtained HA-SS-PCL block copolymers demonstrate promising potential as tumor targeting theranostic nanocarriers in the field of tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Huikang Yang
- Department of Radiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, China; Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Nianhua Wang
- Department of Radiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, China
| | - Lei Mo
- Department of Radiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, China; Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Mei Wu
- Department of Radiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, China; Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Ruimeng Yang
- Department of Radiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, China; Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Xiangdong Xu
- Department of Radiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, China; Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Yugang Huang
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China.
| | - Jiantao Lin
- Dongguan Scientific Research Center, Guangdong Medical University, Dongguan 523808, China
| | - Li-Ming Zhang
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| | - Xinqing Jiang
- Department of Radiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, China; Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510640, China.
| |
Collapse
|
11
|
Pandey B, Patil NG, Bhosle GS, Ambade AV, Gupta SS. Amphiphilic Glycopolypeptide Star Copolymer-Based Cross-Linked Nanocarriers for Targeted and Dual-Stimuli-Responsive Drug Delivery. Bioconjug Chem 2018; 30:633-646. [DOI: 10.1021/acs.bioconjchem.8b00831] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Bhawana Pandey
- Academy of Scientific and Innovative Research, (AcSIR), New Delhi 110025, India
| | - Naganath G. Patil
- Academy of Scientific and Innovative Research, (AcSIR), New Delhi 110025, India
| | - Govind S. Bhosle
- Academy of Scientific and Innovative Research, (AcSIR), New Delhi 110025, India
| | - Ashootosh V. Ambade
- Academy of Scientific and Innovative Research, (AcSIR), New Delhi 110025, India
| | - Sayam Sen Gupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohanpur, Kolkata 741246, India
| |
Collapse
|
12
|
Yilmaz G, Uzunova V, Hartweg M, Beyer V, Napier R, Becer CR. The effect of linker length on ConA and DC-SIGN binding of S-glucosyl functionalized poly(2-oxazoline)s. Polym Chem 2018. [DOI: 10.1039/c7py01939d] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A series of poly(2-oxazoline) based glycopolymers with different linkers were prepared via thiol–ene click reaction and cationic ring opening reaction. The binding of these polymers to lectins were studied.
Collapse
Affiliation(s)
- Gokhan Yilmaz
- Department of Chemistry
- University of Warwick
- CV4 7AL, Coventry
- UK
- Department of Basic Sciences
| | | | - Manuel Hartweg
- Polymer Chemistry Laboratory
- School of Engineering and Materials Science
- Queen Mary
- University of London
- E1 4NS, London
| | - Valentin Beyer
- Polymer Chemistry Laboratory
- School of Engineering and Materials Science
- Queen Mary
- University of London
- E1 4NS, London
| | | | - C. Remzi Becer
- Polymer Chemistry Laboratory
- School of Engineering and Materials Science
- Queen Mary
- University of London
- E1 4NS, London
| |
Collapse
|
13
|
Song Z, Han Z, Lv S, Chen C, Chen L, Yin L, Cheng J. Synthetic polypeptides: from polymer design to supramolecular assembly and biomedical application. Chem Soc Rev 2017; 46:6570-6599. [PMID: 28944387 DOI: 10.1039/c7cs00460e] [Citation(s) in RCA: 245] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Synthetic polypeptides from the ring-opening polymerization of N-carboxyanhydrides (NCAs) are one of the most important biomaterials. The unique features of these synthetic polypeptides, including their chemical diversity of side chains and their ability to form secondary structures, enable their broad applications in the field of gene delivery, drug delivery, bio-imaging, tissue engineering, and antimicrobials. In this review article, we summarize the recent advances in the design of polypeptide-based supramolecular structures, including complexes with nucleic acids, micelles, vesicles, hybrid nanoparticles, and hydrogels. We also highlight the progress in the chemical design of functional polypeptides, which plays a crucial role to manipulate their assembly behaviours and optimize their biomedical performances. Finally, we conclude the review by discussing the future opportunities in this field, including further studies on the secondary structures and cost-effective synthesis of polypeptide materials.
Collapse
Affiliation(s)
- Ziyuan Song
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| | | | | | | | | | | | | |
Collapse
|
14
|
Yang HK, Bao JF, Mo L, Yang RM, Xu XD, Tang WJ, Lin JT, Wang GH, Zhang LM, Jiang XQ. Bioreducible amphiphilic block copolymers based on PCL and glycopolypeptide as multifunctional theranostic nanocarriers for drug delivery and MR imaging. RSC Adv 2017. [DOI: 10.1039/c7ra01440f] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Amphiphilic diblock poly(ε-caprolactone)-b-glycopolypeptides (PCL–SS–GPPs) bearing disulfide bonds were synthesized from a clickable poly(ε-caprolactone)–SS–poly(2-azidoethyl-l-glutamate) diblock copolymer.
Collapse
|