1
|
Shui L, Guo X, Li J, Li Z, Zhao Q, Chen G, Zhao X. Thermal, Crystallization, and Toughness Behavior of Polyamide 4/Long-Chain Hyperbranched Polymer Blends. Polymers (Basel) 2025; 17:318. [PMID: 39940520 PMCID: PMC11820697 DOI: 10.3390/polym17030318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/18/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
Long-chain hyperbranched polyesters (LHBPx, x = 1, 2, 3) with varying lengths of branched chains were synthesized through a thiol-ene click reaction. Subsequently, LHBPx was incorporated into PA4 via the solution method to prepare a LHBPx/PA4 polymer blend, aiming to address the limitations of PA4, such as its narrow thermal processing window (△T = Td5-Tm) and high brittleness. The results demonstrated that the addition of LHBPx enhanced the △T of PA4 from 1.6 °C to 14.5 °C (LHBP3/PA4), increasing the rheological properties of LHBPx/PA4 polymer blends, thereby improving its thermal processability. Compared with PA4, the elongation at the break of the LHBP3/PA4 polymer blend was increased by 20.4%, and the brittle fracture was changed into a ductile fracture. The crystallinity of PA4 was greatly decreased, from 54.41% to 37.42%, owing to the incorporation of LHBPx, whereas Tm of PA4 had almost no change. It was explained that LHBPx hindered the crystal growth stage, whereas it promoted the nucleation stage of PA4, resulting in no significant change in crystal type. Moreover, the longer the branched chain of LHBPx was, the more pronounced the improvement in the thermal processability and toughness of PA4 became. Above all, this work was meaningful for the potential application of PA4 in industrial plastics.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiaomin Zhao
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China; (L.S.); (X.G.); (J.L.); (Z.L.); (Q.Z.); (G.C.)
| |
Collapse
|
2
|
Grey EL, McClendon J, Suresh J, Alper S, Janssen WJ, Bryant SJ. Thiol-Michael Addition Microparticles: Their Synthesis, Characterization, and Uptake by Macrophages. ACS Biomater Sci Eng 2023; 9:4223-4240. [PMID: 37379254 PMCID: PMC10619202 DOI: 10.1021/acsbiomaterials.3c00441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Polymeric microparticles are promising biomaterial platforms for targeting macrophages in the treatment of disease. This study investigates microparticles formed by a thiol-Michael addition step-growth polymerization reaction with tunable physiochemical properties and their uptake by macrophages. The hexafunctional thiol monomer dipentaerythritol hexa-3-mercaptopropionate (DPHMP) and tetrafunctional acrylate monomer di(trimethylolpropane) tetraacrylate (DTPTA) were reacted in a stepwise dispersion polymerization, achieving tunable monodisperse particles over a size range (1-10 μm) relevant for targeting macrophages. An off-stoichiometry thiol-acrylate reaction afforded facile secondary chemical functionalization to create particles with different chemical moieties. Uptake of the microparticles by RAW 264.7 macrophages was highly dependent on treatment time, particle size, and particle chemistry with amide, carboxyl, and thiol terminal chemistries. The amide-terminated particles were non-inflammatory, while the carboxyl- and thiol-terminated particles induced pro-inflammatory cytokine production in conjunction with particle phagocytosis. Finally, a lung-specific application was explored through time-dependent uptake of amide-terminated particles by human alveolar macrophages in vitro and mouse lungs in vivo without inducing inflammation. The findings demonstrate a promising microparticulate delivery vehicle that is cyto-compatible, is non-inflammatory, and exhibits high rates of uptake by macrophages.
Collapse
Affiliation(s)
- Emerson L. Grey
- Department of Chemical and Biological Engineering, University of Colorado, 3415 Colorado Ave, Boulder, CO 80309-0596, USA
| | - Jazalle McClendon
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, 1400 Jackson St, Denver, CO 80206, USA
| | - Joshita Suresh
- Department of Chemical and Biological Engineering, University of Colorado, 3415 Colorado Ave, Boulder, CO 80309-0596, USA
| | - Scott Alper
- Department of Immunology and Genomic Medicine, Center for Genes, Environment and Health, National Jewish Health, 1400 Jackson St, Denver, CO 80206, USA
| | - William J. Janssen
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, 1400 Jackson St, Denver, CO 80206, USA
- Department of Medicine, University of Colorado Anschutz Medical Campus, 12631 East 17th Avenue, Aurora, CO 80045, USA
| | - Stephanie J. Bryant
- Department of Chemical and Biological Engineering, University of Colorado, 3415 Colorado Ave, Boulder, CO 80309-0596, USA
- Materials Science & Engineering Program, University of Colorado, 4001 Discovery Dr, Boulder, CO 80309-0613, USA
- BioFrontiers Institute, University of Colorado, 3415 Colorado Ave, Boulder, CO 80309-0596, USA
| |
Collapse
|
3
|
Cassidy KJ, Shipp DA. Particle formation in thermally initiated radical‐mediated thiol‐ene emulsion polymerizations. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Kyle J. Cassidy
- Department of Chemistry & Biomolecular Science, Center for Advanced Materials Processing Clarkson University Potsdam New York USA
| | - Devon A. Shipp
- Department of Chemistry & Biomolecular Science, Center for Advanced Materials Processing Clarkson University Potsdam New York USA
| |
Collapse
|
4
|
Lewandowska A, Gajewski P, Szcześniak K, Marcinkowska A. The Influence of Monomer Structure on the Properties of Ionogels Obtained by Thiol-Ene Photopolymerization. Gels 2021; 7:gels7040214. [PMID: 34842682 PMCID: PMC8628749 DOI: 10.3390/gels7040214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 11/16/2022] Open
Abstract
The influence of ene and thiol monomer structure on the mechanical and electrochemical properties of thiol-ene polymeric ionogels were investigated. Ionogels were obtained in situ by thiol-ene photopolymerization of 1,3,5-triallyl-1,3,5-triazine-2,4,6(1H,3H,5H)-trione (TATT), 2,4,6-triallyloxy-1,3,5-triazine (TAT), diallyl phthalate (DAP), and glyoxal bis(diallyl acetal) (GBDA) used as enes and trimethylolpropane tris(3-mercaptopropionate) (TMPTP), pentaerythritol tetrakis(3-mercaptopropionate) (PETMP), and pentaerythritol tetrakis(3-mercaptobutyrate) (PETMB) used as thiols in 70 wt.% of ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMImNTf2). The mechanical strength of ionogels was studied by puncture resistance and ionic conductivity by electrochemical impedance spectroscopy. The course of photopolymerization by photo-DSC method (differential scanning calorimetry) as well as characterization of compositions and its components (by IR and UV spectroscopy-Kamlet-Taft parameters) were also studied. The resulting ionogels were opaque, with phase separation, which resulted from the dispersion mechanism of polymerization. The mechanical and conductive properties of the obtained materials were found to be largely dependent on the monomer structure. Ionogels based on triazine monomers TAT and TATT were characterized by higher mechanical strength, while those based on aliphatic GBDA had the highest conductivity. These parameters are strongly related to the structure of the polymer matrix, which is in the form of connected spheres. The conductivity of ionogels was high, in the range of 3.5-5.1 mS∙cm-1.
Collapse
|
5
|
Fairbanks BD, Macdougall LJ, Mavila S, Sinha J, Kirkpatrick BE, Anseth KS, Bowman CN. Photoclick Chemistry: A Bright Idea. Chem Rev 2021; 121:6915-6990. [PMID: 33835796 PMCID: PMC9883840 DOI: 10.1021/acs.chemrev.0c01212] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
At its basic conceptualization, photoclick chemistry embodies a collection of click reactions that are performed via the application of light. The emergence of this concept has had diverse impact over a broad range of chemical and biological research due to the spatiotemporal control, high selectivity, and excellent product yields afforded by the combination of light and click chemistry. While the reactions designated as "photoclick" have many important features in common, each has its own particular combination of advantages and shortcomings. A more extensive realization of the potential of this chemistry requires a broader understanding of the physical and chemical characteristics of the specific reactions. This review discusses the features of the most frequently employed photoclick reactions reported in the literature: photomediated azide-alkyne cycloadditions, other 1,3-dipolarcycloadditions, Diels-Alder and inverse electron demand Diels-Alder additions, radical alternating addition chain transfer additions, and nucleophilic additions. Applications of these reactions in a variety of chemical syntheses, materials chemistry, and biological contexts are surveyed, with particular attention paid to the respective strengths and limitations of each reaction and how that reaction benefits from its combination with light. Finally, challenges to broader employment of these reactions are discussed, along with strategies and opportunities to mitigate such obstacles.
Collapse
Affiliation(s)
- Benjamin D Fairbanks
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
| | - Laura J Macdougall
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
| | - Sudheendran Mavila
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
| | - Jasmine Sinha
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
| | - Bruce E Kirkpatrick
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
- The BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303, United States
- Medical Scientist Training Program, School of Medicine, University of Colorado, Aurora, Coorado 80045, United States
| | - Kristi S Anseth
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
- The BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303, United States
| | - Christopher N Bowman
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
- Materials Science and Engineering Program, University of Colorado, Boulder, Colorado 80303, United States
| |
Collapse
|
6
|
Le CMQ, Vidal L, Schmutz M, Chemtob A. Droplet nucleation in miniemulsion thiol–ene step photopolymerization. Polym Chem 2021. [DOI: 10.1039/d1py00139f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Reaction parameters, such as droplet size, initiator solubility and monomer solubility, which are important in favouring droplet nucleation in a miniemulsion thiol–ene step polymerization are reviewed.
Collapse
Affiliation(s)
| | - Loïc Vidal
- Université de Haute-Alsace
- CNRS
- IS2M UMR7361
- F-68100 Mulhouse
- France
| | - Marc Schmutz
- Université de Strasbourg
- CNRS
- Institut Charles Sadron
- 67000 Strasbourg
- France
| | - Abraham Chemtob
- Université de Haute-Alsace
- CNRS
- IS2M UMR7361
- F-68100 Mulhouse
- France
| |
Collapse
|
7
|
Liu Y, Wei M, Jiang X, Ren M, Liu L, Wen B, Yang W. Anomalously Shaped Functional Particles Prepared by Thiol-Isocyanate Off-Stoichiometric Click Dispersion Polymerization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:14417-14424. [PMID: 33198464 DOI: 10.1021/acs.langmuir.0c02798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Anomalously shaped microparticles have attractive advantages in applications. They are usually prepared by chain-growth polymerizations in heterogeneous systems. Recently, thiol-X step-growth polymerizations have been used to produce functional particles with a regular shape but rarely anomalous shapes. Herein, we report the preparation of anomalously shaped particles by thiol-isocyanate dispersion polymerization (Dis.P) in ethanol using polyvinylpyrrolidone (PVP) as a stabilizer and catalyst. Papillae-shaped, raspberry-like, and multibulged particles are prepared by tuning monomer combinations, contents, and feed ratios. Particle morphology evolutions during polymerization are observed by scanning electron microscopy (SEM). Distinct from previous works, particles with residual -SH groups are obtained even with equal moles of monomers added initially. The residue of -SH groups is revealed by Fourier transform infrared spectroscopy (FT-IR) analyses and confirmed by detection with a fluorescent probe containing disulfide linkage. Moreover, fluorescent particle probes are formed by the reaction of excess -NCO groups on particles with fluorescein isothiocyanate isomer I (FITC) and dithioacetal-functionalized perylenediimide (DTPDI). The probes are sensitive in detection of glutathione (GSH) and Hg2+ in water. Hg2+ as low as 1-0.1 ppb is detected using a raspberry-like particle probe with DTPDI.
Collapse
Affiliation(s)
- Yuqi Liu
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Mingyue Wei
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xingyu Jiang
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Mingwei Ren
- State Key Laboratory of Advanced Forming Technology and Equipment, Beijing National Innovation Institute of Lightweight Ltd., Beijing 100083, China
| | - Lianying Liu
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Bianying Wen
- School of Materials and Mechanical Engineering, Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, China
| | - Wantai Yang
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
8
|
Affiliation(s)
- Olivia Z. Durham
- Department of Chemistry and Biomolecular Science, and Center for Advanced Materials Processing, Clarkson University, Potsdam, New York, USA
| | - Devon A. Shipp
- Department of Chemistry and Biomolecular Science, and Center for Advanced Materials Processing, Clarkson University, Potsdam, New York, USA
| |
Collapse
|
9
|
Deng YY, Han D, Zhou DL, Liu ZQ, Zhang Q, Li Y, Fu Q. Monodispersed hybrid microparticles based on polyhedral oligomeric silsesquioxane with good UV resistance and high thermal stability: From organic to inorganic. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.121609] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
10
|
Cassidy KJ, Durham OZ, Shipp DA. Composite Particles From Pickering‐Stabilized Radical Mediated Thiol‐Ene Suspension Polymerizations. MACROMOL REACT ENG 2019. [DOI: 10.1002/mren.201800075] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kyle J. Cassidy
- Department of Chemistry and Biomolecular Science, andCenter for Advanced Materials ProcessingClarkson University Potsdam New York 13699–5810
| | - Olivia Z. Durham
- Department of Chemistry and Biomolecular Science, andCenter for Advanced Materials ProcessingClarkson University Potsdam New York 13699–5810
| | - Devon A. Shipp
- Department of Chemistry and Biomolecular Science, andCenter for Advanced Materials ProcessingClarkson University Potsdam New York 13699–5810
| |
Collapse
|
11
|
Marcinkowska A, Zgrzeba A, Lota G, Kopczyński K, Andrzejewska E. Ionogels by thiol-ene photopolymerization in ionic liquids: Formation, morphology and properties. POLYMER 2019. [DOI: 10.1016/j.polymer.2018.11.060] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Jenjob R, Seidi F, Crespy D. Recent advances in polymerizations in dispersed media. Adv Colloid Interface Sci 2018; 260:24-31. [PMID: 30170689 DOI: 10.1016/j.cis.2018.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/06/2018] [Accepted: 08/07/2018] [Indexed: 01/07/2023]
Abstract
Advances in chemistry heterophase polymerizations reflect new developments in polymer chemistry. Although some few polymerization reactions cannot be performed in dispersed media, new polymerization reactions can still benefit from advantages of heterophase reactions, which are fast kinetics due to high local concentration of reagents and advantageous heat exchange. We describe here advances in heterophase polymerizations, with a focus on miniemulsion polymerization, which are mainly driven by academic interest for biomedicine and energy science. Click-reactions in dispersion are particularly interesting because they are bioorthogonals. Synthesis of highly crosslinked polymer colloids, especially with conjugated polymers, has found applications in gas storage, catalysis, and production of energy. Finally, we show how spatial segregation in heterophase polymerization can help to obtain polymer materials with unique structures.
Collapse
Affiliation(s)
- Ratchapol Jenjob
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 21210 Rayong, Thailand
| | - Farzad Seidi
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 21210 Rayong, Thailand
| | - Daniel Crespy
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 21210 Rayong, Thailand.
| |
Collapse
|
13
|
Hafeez S, Barner L, Nebhani L. TEMPO Driven Mild and Modular Route to Functionalized Microparticles. Macromol Rapid Commun 2018; 39:e1800169. [PMID: 29749016 DOI: 10.1002/marc.201800169] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/03/2018] [Indexed: 01/13/2023]
Abstract
The synthesis of crosslinked polymeric microspheres (3.8-15.0 µm) via (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) initiated thiol-ene dispersion polymerization under ambient conditions is reported for the first time. The initiating ability of TEMPO for the thiol-ene reaction is validated by electron paramagnetic resonance (EPR) and 1 H nuclear magnetic resonance (NMR) spectroscopy on model reactions between 1-octadecanethiol and two electron deficient enes, n-butylacrylate and divinyl sulfone. Critically, the TEMPO resonance observed in the EPR spectra decreases with time when TEMPO is mixed with thiol and an electron deficient ene. The 1 H NMR spectra demonstrate formation of up to 90% of thioether under ambient conditions. Based on these model reactions, a variety of crosslinked polymeric microspheres are synthesized with excellent morphological stability using poly(vinyl pyrrolidone) as surfactant. The ability of the microspheres for a second TEMPO initiated thiol-ene reaction is demonstrated by the ligation of fluorescein-5-maleimide (an ene) to the microspheres' surface containing excess of thiol functionality and by ligation of cysteine (containing a thiol group) to the microspheres' surface containing an excess of ene functionality. The synthesized polymeric microspheres are characterized using scanning electron microscopy, differential scanning calorimetry, Fourier-transform infrared spectroscopy, zeta potential, and X-ray photoelectron spectroscopy.
Collapse
Affiliation(s)
- Sumbul Hafeez
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Leonie Barner
- School of Chemistry, Physics and Mechanical Engineering, and Institute for Future Environments, Queensland University of Technology (QUT), 2 George Street, QLD, 4000, Brisbane, Australia.,Institute for Biological Interfaces (IBG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Leena Nebhani
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India
| |
Collapse
|
14
|
Dadfar SMM, Sekula-Neuner S, Bog U, Trouillet V, Hirtz M. Site-Specific Surface Functionalization via Microchannel Cantilever Spotting (µCS): Comparison between Azide-Alkyne and Thiol-Alkyne Click Chemistry Reactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1800131. [PMID: 29682874 DOI: 10.1002/smll.201800131] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/15/2018] [Indexed: 06/08/2023]
Abstract
Different types of click chemistry reactions are proposed and used for the functionalization of surfaces and materials, and covalent attachment of organic molecules. In the present work, two different catalyst-free click approaches, namely azide-alkyne and thiol-alkyne click chemistry are studied and compared for the immobilization of microarrays of azide or thiol inks on functionalized glass surfaces. For this purpose, the surface of glass is first functionalized with dibenzocyclooctyne-acid (DBCO-acid), a cyclooctyne with a carboxyl group. Then, the DBCO-terminated surfaces are functionalized via microchannel cantilever spotting with different fluorescent and nonfluorescent azide and thiol inks. Although both routes work reliably for surface functionalization, the protein binding experiments reveal that using a thiol-alkyne route will obtain the highest surface density of molecular immobilization in such spotting approaches. The obtained achievements and results from this work can be used for design and manufacturing of microscale patterns suitable for biomedical and biological applications.
Collapse
Affiliation(s)
- Seyed Mohammad Mahdi Dadfar
- Institute of Nanotechnology (INT) & Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Sylwia Sekula-Neuner
- Institute of Nanotechnology (INT) & Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Uwe Bog
- Institute of Nanotechnology (INT) & Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Vanessa Trouillet
- Institute for Applied Materials (IAM) & Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Michael Hirtz
- Institute of Nanotechnology (INT) & Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
15
|
Hoffmann C, Chiaula V, Yu L, Pinelo M, Woodley JM, Daugaard AE. Simple Preparation of Thiol-Ene Particles in Glycerol and Surface Functionalization by Thiol-Ene Chemistry (TEC) and Surface Chain Transfer Free Radical Polymerization (SCT-FRP). Macromol Rapid Commun 2017; 39. [DOI: 10.1002/marc.201700394] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/16/2017] [Indexed: 12/27/2022]
Affiliation(s)
- Christian Hoffmann
- Department of Chemical and Biochemical Engineering; Danish Polymer Centre; Technical University of Denmark; Søltofts Plads Building 229 Kgs. Lyngby 2800 Denmark
| | - Valeria Chiaula
- Department of Chemical and Biochemical Engineering; Danish Polymer Centre; Technical University of Denmark; Søltofts Plads Building 229 Kgs. Lyngby 2800 Denmark
| | - Liyun Yu
- Department of Chemical and Biochemical Engineering; Danish Polymer Centre; Technical University of Denmark; Søltofts Plads Building 229 Kgs. Lyngby 2800 Denmark
| | - Manuel Pinelo
- Department of Chemical and Biochemical Engineering; Center for BioProcess Engineering; Technical University of Denmark; Søltofts Plads Building 229 Kgs. Lyngby 2800 Denmark
| | - John M. Woodley
- Department of Chemical and Biochemical Engineering; Process and Systems Engineering Center (PROSYS); Technical University of Denmark; Søltofts Plads Building 229 Kgs. Lyngby 2800 Denmark
| | - Anders E. Daugaard
- Department of Chemical and Biochemical Engineering; Danish Polymer Centre; Technical University of Denmark; Søltofts Plads Building 229 Kgs. Lyngby 2800 Denmark
| |
Collapse
|
16
|
Durham OZ, Chapman DV, Krishnan S, Shipp DA. Radical Mediated Thiol-Ene Emulsion Polymerizations. Macromolecules 2017. [DOI: 10.1021/acs.macromol.6b02228] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Olivia Z. Durham
- Department of Chemistry & Biomolecular Science, ‡Department of Chemical & Biomolecular Engineering, and §Center for Advanced Materials Processing, Clarkson University, Potsdam, New York 13699, United States
| | - Dana V. Chapman
- Department of Chemistry & Biomolecular Science, ‡Department of Chemical & Biomolecular Engineering, and §Center for Advanced Materials Processing, Clarkson University, Potsdam, New York 13699, United States
| | - Sitaraman Krishnan
- Department of Chemistry & Biomolecular Science, ‡Department of Chemical & Biomolecular Engineering, and §Center for Advanced Materials Processing, Clarkson University, Potsdam, New York 13699, United States
| | - Devon A. Shipp
- Department of Chemistry & Biomolecular Science, ‡Department of Chemical & Biomolecular Engineering, and §Center for Advanced Materials Processing, Clarkson University, Potsdam, New York 13699, United States
| |
Collapse
|
17
|
Tan J, Li C, De Bruycker K, Zhang G, Gu J, Zhang Q. Recyclable cross-linked hydroxythioether particles with tunable structures via robust and efficient thiol-epoxy dispersion polymerizations. RSC Adv 2017. [DOI: 10.1039/c7ra10481b] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Thiol-epoxy reactions were first exploited as a simple method for the preparation of recyclable cross-linked hydroxythioether particles with tunable structures.
Collapse
Affiliation(s)
- Jiaojun Tan
- Key Laboratory of Applied Physics and Chemistry in Space of Ministry of Education
- School of Science
- Northwestern Polytechnical University
- Xi'an
- China
| | - Chunmei Li
- Key Laboratory of Applied Physics and Chemistry in Space of Ministry of Education
- School of Science
- Northwestern Polytechnical University
- Xi'an
- China
| | - Kevin De Bruycker
- Department of Organic and Macromolecular Chemistry
- Polymer Chemistry Research Group
- Ghent University
- B-9000 Ghent
- Belgium
| | - Guoxian Zhang
- Key Laboratory of Applied Physics and Chemistry in Space of Ministry of Education
- School of Science
- Northwestern Polytechnical University
- Xi'an
- China
| | - Junwei Gu
- Key Laboratory of Applied Physics and Chemistry in Space of Ministry of Education
- School of Science
- Northwestern Polytechnical University
- Xi'an
- China
| | - Qiuyu Zhang
- Key Laboratory of Applied Physics and Chemistry in Space of Ministry of Education
- School of Science
- Northwestern Polytechnical University
- Xi'an
- China
| |
Collapse
|
18
|
Jiang K, Liu Y, Yan Y, Wang S, Liu L, Yang W. Combined chain- and step-growth dispersion polymerization toward PSt particles with soft, clickable patches. Polym Chem 2017. [DOI: 10.1039/c6py02094a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Particles with a hard body and soft, clickable dimple- or bulge-patches are prepared by simple combined chain- and step-growth dispersion polymerization.
Collapse
Affiliation(s)
- Kun Jiang
- Beijing Engineering Research Centre for the Synthesis and Applications of Waterborne Polymers
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Yanan Liu
- Beijing Engineering Research Centre for the Synthesis and Applications of Waterborne Polymers
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Yaping Yan
- Beijing Engineering Research Centre for the Synthesis and Applications of Waterborne Polymers
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Shengliu Wang
- Beijing Engineering Research Centre for the Synthesis and Applications of Waterborne Polymers
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Lianying Liu
- Beijing Engineering Research Centre for the Synthesis and Applications of Waterborne Polymers
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Wantai Yang
- Beijing Engineering Research Centre for the Synthesis and Applications of Waterborne Polymers
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| |
Collapse
|