1
|
Wijeratne PM, Ocando C, Grignard B, Berglund LA, Raquez JM, Zhou Q. Synthesis, Thermal and Mechanical Properties of Nonisocyanate Thermoplastic Polyhydroxyurethane Nanocomposites with Cellulose Nanocrystals and Chitin Nanocrystals. Biomacromolecules 2025. [PMID: 40343709 DOI: 10.1021/acs.biomac.5c00113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2025]
Abstract
Incorporating biobased nanofillers including cellulose nanocrystals (CNCs) and chitin nanocrystals (ChNCs) into nonisocyanate polyurethane (NIPU) offers a multifunctional approach to improving mechanical and thermal properties while promoting sustainability and green chemistry. Nanocomposites of segmented thermoplastic polyhydroxyurethane (PHU) from vanillyl alcohol bis(cyclocarbonate) (VABC), poly(tetramethylene oxide) diamine (PTMODA), and bis(aminomethyl) norbornane (NORB) reinforced with a low amount of CNCs and partially deacetylated ChNCs were prepared and characterized. Fourier transform infrared spectroscopy, atomic force microscopy, and small-angle X-ray scattering revealed that partially deacetylated ChNCs were covalently grafted to the PHU through aminolysis of carbonate end groups in the hard segment, while CNCs were mixed with the PHU without interfacial covalent bonding. Consequently, the PHU/ChNC nanocomposites showed nanophase separation with smaller hard domains compared to neat PHU, while the PHU/CNC nanocomposites exhibited a phase-mixed system with broader interface regions. Dynamic mechanical analysis and tensile tests further revealed that the PHU/ChNC nanocomposites demonstrated a 49-fold increase in Young's modulus, a 20-fold increase in ultimate tensile strength, and a three-order-of-magnitude enhancement in storage modulus in the rubbery state compared to the PHU/CNC nanocomposites, highlighting the profound influence of interfacial covalent linkages in enhancing the thermal mechanical performance of segmented PHU.
Collapse
Affiliation(s)
- Pavithra M Wijeratne
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Centre, 106 91, Stockholm, Sweden
- Laboratory of Polymeric and Composite Materials, Department of Chemistry, Faculty of Science, University of Mons, Mons 7000, Belgium
| | - Connie Ocando
- Laboratory of Polymeric and Composite Materials, Department of Chemistry, Faculty of Science, University of Mons, Mons 7000, Belgium
| | - Bruno Grignard
- Center for Education and Research on Macromolecules (CERM), Federation of Researchers in Innovative Technologies for CO2 Transformation (FRITCO2T Research Platform), CESAM Research Unit, University of Liege, 13, Allée Du 6 août, Building B6a, Liege 4000, Belgium
| | - Lars A Berglund
- Department of Fiber and Polymer Technology, KTH Royal Institute of Technology, Stockholm 100 44, Sweden
| | - Jean-Marie Raquez
- Laboratory of Polymeric and Composite Materials, Department of Chemistry, Faculty of Science, University of Mons, Mons 7000, Belgium
| | - Qi Zhou
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Centre, 106 91, Stockholm, Sweden
| |
Collapse
|
2
|
Qian H, Xu G, Yang S, Ang EH, Chen Q, Lin C, Liao J, Shen J. Advancing Lithium-Magnesium Separation: Pioneering Swelling-Embedded Cation Exchange Membranes Based on Sulfonated Poly(ether ether ketone). ACS APPLIED MATERIALS & INTERFACES 2024; 16:18019-18029. [PMID: 38546167 DOI: 10.1021/acsami.4c00991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
With the continuous advancement of electrodialysis (ED) technology, there arises a demand for improved monovalent cation exchange membranes (CEMs). However, limitations in membrane materials and structures have resulted in the low selectivity of monovalent CEMs, posing challenges in the separation of Li+ and Mg2+. In this investigation, a designed CEM with a swelling-embedded structure was created by integrating a polyelectrolyte containing N-oxide Zwitterion into a sulfonated poly(ether ether ketone) (SPEEK) membrane, leveraging the notable solubility characteristic of SPEEK. The membranes were prepared by using N-oxide zwitterionic polyethylenimine (ZPEI) and 1,3,5-benzenetrlcarbonyl trichloride (TMC). The as-prepared membranes underwent systematic characterization and testing, evaluating their structural, physicochemical, electrochemical, and selective ED properties. During ED, the modified membranes demonstrated notable permeability selectivity for Li+ ions in binary (Li+/Mg2+) systems. Notably, at a constant current density of 2.5 mA cm-2, the modified membrane PEI-TMC/SPEEK exhibited significant permeability selectivity ( P Mg 2 + Li + = 5.63 ) in the Li+/Mg2+ system, while ZPEI-TMC/SPEEK outperformed, displaying remarkable permeability selectivity ( P Mg 2 + Li + = 12.43 ) in the Li+/Mg2+ system, surpassing commercial monovalent cation-selective membrane commercial monovalent cation-selective membrane (CIMS). Furthermore, in the Li+/Mg2+ binary system, Li+ flux reached 9.78 × 10-9 mol cm-2 s-1 for ZPEI-TMC/SPEEK, while its Mg2+ flux only reached 2.7 × 10-9 mol cm-2 s-1, showing potential for lithium-magnesium separation. In addition, ZPEI-TMC/SPEEK was tested for performance and stability at high current densities. This work offers a straightforward preparation process and an innovative structural approach, presenting methodological insights for the advancement of lithium and magnesium separation techniques.
Collapse
Affiliation(s)
- Hao Qian
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Geting Xu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Shanshan Yang
- Shijiazhuang Key Laboratory of Low Carbon Energy Materials, College of Chemical Engineering, Shijiazhuang University, Shijiazhuang 050035, China
| | - Edison Huixiang Ang
- Nature Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore 637616, Singapore
| | - Quan Chen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chenfei Lin
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Junbin Liao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jiangnan Shen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
3
|
Li L, Zhao B, Hang G, Gao Y, Hu J, Zhang T, Zheng S. Polyhydroxyurethane and Poly(ethylene oxide) Multiblock Copolymer Networks: Crosslinking with Polysilsesquioxane, Reprocessing and Solid Polyelectrolyte Properties. Polymers (Basel) 2023; 15:4634. [PMID: 38139886 PMCID: PMC10747941 DOI: 10.3390/polym15244634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
This contribution reports the synthesis of polyhydroxyurethane (PHU)-poly(ethylene oxide) (PEO) multiblock copolymer networks crosslinked with polysilsesquioxane (PSSQ). First, the linear PHU-PEO multiblock copolymers were synthesized via the step-growth polymerization of bis(6-membered cyclic carbonate) (B6CC) with α,ω-diamino-terminated PEOs with variable molecular weights. Thereafter, the PHU-PEO copolymers were allowed to react with 3-isocyanatopropyltriethoxysilane (IPTS) to afford the derivatives bearing triethoxysilane moieties, the hydrolysis and condensation of which afforded the PHU-PEO networks crosslinked with PSSQ. It was found that the PHU-PEO networks displayed excellent reprocessing properties in the presence of trifluoromethanesulfonate [Zn(OTf)2]. Compared to the PHU networks crosslinked via the reaction of difunctional cyclic carbonate with multifunctional amines, the organic-inorganic PHU networks displayed the decreased reprocessing temperature. The metathesis of silyl ether bonds is responsible for the improved reprocessing behavior. By adding lithium trifluoromethanesulfonate (LiOTf), the PHU-PEO networks were further transformed into the solid polymer electrolytes. It was found that the crystallization of PEO chains in the crosslinked networks was significantly suppressed. The solid polymer electrolytes had the ionic conductivity as high as 7.64 × 10-5 S × cm-1 at 300 K. More importantly, the solid polymer electrolytes were recyclable; the reprocessing did not affect the ionic conductivity.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sixun Zheng
- Department of Polymer Science and Engineering and the State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
4
|
Purwanto NS, Chen Y, Wang T, Torkelson JM. Rapidly synthesized, self-blowing, non-isocyanate Polyurethane network foams with reprocessing to bulk networks via hydroxyurethane dynamic chemistry. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
5
|
Bourguignon M, Grignard B, Detrembleur C. Water-Induced Self-Blown Non-Isocyanate Polyurethane Foams. Angew Chem Int Ed Engl 2022; 61:e202213422. [PMID: 36278827 DOI: 10.1002/anie.202213422] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Indexed: 11/18/2022]
Abstract
For 80 years, polyisocyanates and polyols were central building blocks for the industrial fabrication of polyurethane (PU) foams. By their partial hydrolysis, isocyanates release CO2 that expands the PU network. Substituting this toxic isocyanate-based chemistry by a more sustainable variant-that in situ forms CO2 by hydrolysis of a comonomer-is urgently needed for producing greener cellular materials. Herein, we report a facile, up-scalable process, potentially compatible to existing infrastructures, to rapidly prepare water-induced self-blown non-isocyanate polyurethane (NIPU) foams. We show that formulations composed of poly(cyclic carbonate)s and polyamines furnish rigid or flexible NIPU foams by partial hydrolysis of cyclic carbonates in the presence of a catalyst. By utilizing readily available low cost starting materials, this simple but robust process gives access to greener PU foams, expectedly responding to the sustainability demands of many sectors.
Collapse
Affiliation(s)
- Maxime Bourguignon
- Center for Education and Research on Macromolecules(CERM), CESAM Research Unit, University of Liège, Department of Chemistry, Sart-Tilman, B6A, 4000, Liège, Belgium
| | - Bruno Grignard
- Center for Education and Research on Macromolecules(CERM), CESAM Research Unit, University of Liège, Department of Chemistry, Sart-Tilman, B6A, 4000, Liège, Belgium
| | - Christophe Detrembleur
- Center for Education and Research on Macromolecules(CERM), CESAM Research Unit, University of Liège, Department of Chemistry, Sart-Tilman, B6A, 4000, Liège, Belgium
| |
Collapse
|
6
|
Enhanced monovalent anion selectivity of poly(2,6-dimethyl-1,4-phenylene oxide)-based amphoteric ion exchange membranes having rough surface. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Teoh Y, Ayoub G, Huskić I, Titi HM, Nickels CW, Herrmann B, Friščić T. SpeedMixing: Rapid Tribochemical Synthesis and Discovery of Pharmaceutical Cocrystals without Milling or Grinding Media**. Angew Chem Int Ed Engl 2022; 61:e202206293. [DOI: 10.1002/anie.202206293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Yong Teoh
- Department of Chemistry McGill University 801 Sherbrooke St. W. Montreal H3A 0B8 Canada
| | - Ghada Ayoub
- Department of Chemistry McGill University 801 Sherbrooke St. W. Montreal H3A 0B8 Canada
| | - Igor Huskić
- Department of Chemistry McGill University 801 Sherbrooke St. W. Montreal H3A 0B8 Canada
| | - Hatem M. Titi
- Department of Chemistry McGill University 801 Sherbrooke St. W. Montreal H3A 0B8 Canada
| | | | | | - Tomislav Friščić
- Department of Chemistry McGill University 801 Sherbrooke St. W. Montreal H3A 0B8 Canada
| |
Collapse
|
8
|
Hu S, Chen X, Torkelson JM. Isocyanate-free, thermoplastic polyhydroxyurethane elastomers designed for cold temperatures: Influence of PDMS soft-segment chain length and hard-segment content. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
9
|
Teoh Y, Ayoub G, Huskic I, Titi HM, Nickels CW, Herrmann B, Friscic T. SpeedMixing: Rapid Tribochemical Synthesis and Discovery of Pharmaceutical Cocrystals without Milling or Grinding Media. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | | | | | | | | | - Brad Herrmann
- Flacktek, Inc. Flacktek, Inc. 1708 SC-11 29356 Landrum UNITED STATES
| | - Tomislav Friscic
- McGill University Chemistry 801 Sherbrooke St. W. H3A 0B8 Montreal CANADA
| |
Collapse
|
10
|
Liu W, Ge W, Mei H, Hang G, Li L, Zheng S. Poly(hydroxyurethane‐
co
‐thiourethane)s cross‐linked with disulfide bonds: Synthesis via isocyanate‐free approach, thermomechanical and reprocessing properties. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Weiming Liu
- Department of Polymer Science and Engineering and the State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai PR China
| | - Wenming Ge
- Department of Polymer Science and Engineering and the State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai PR China
| | - Honggang Mei
- Department of Polymer Science and Engineering and the State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai PR China
| | - Guohua Hang
- Department of Polymer Science and Engineering and the State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai PR China
| | - Lei Li
- Department of Polymer Science and Engineering and the State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai PR China
| | - Sixun Zheng
- Department of Polymer Science and Engineering and the State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai PR China
| |
Collapse
|
11
|
Chen Q, Yao Y, Liao J, Li J, Xu J, Wang T, Tang Y, Xu Y, Ruan H, Shen J. Subnanometer Ion Channel Anion Exchange Membranes Having a Rigid Benzimidazole Structure for Selective Anion Separation. ACS NANO 2022; 16:4629-4641. [PMID: 35226457 DOI: 10.1021/acsnano.1c11264] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ion-conductive polymers having a well-defined phase-separated structure show the potential application of separating mono- and bivalent ion separation. In this work, three side-chain-type poly(arylene ether sulfone)-based anion exchange membranes (AEMs) have been fabricated to investigate the effect of the stiffness of the polymer backbone within AEMs on the Cl-/NO3- and Cl-/SO42- separation performance. Our investigations via small-angle X-ray scattering (SAXS), positron annihilation, and differential scanning calorimetry (DSC) demonstrate that the as-prepared AEM with a rigid benzimidazole structure in the backbone bears subnanometer ion channels resulting from the arrangement of the rigid polymer backbone. In particular, SAXS results demonstrate that the rigid benzimidazole-containing AEM in the wet state has an ion cluster size of 0.548 nm, which is smaller than that of an AEM with alkyl segments in the backbone (0.760 nm). Thus, in the electrodialysis (ED) process, the former exhibits a superior capacity of separating Cl-/SO42- ions relative to latter. Nevertheless, the benzimidazole-containing AEM shows an inability to separate the Cl-/NO3- ions, which is possibly due to the similar ion size of the two. The higher rotational energy barrier (4.3 × 10-3 Hartree) of benzimidazole units and the smaller polymer matrix free-volume (0.636%) in the AEM significantly contribute to the construction of smaller ion channels. As a result, it is believed that the rigid benzimidazole structure of this kind is a benefit to the construction of stable subnanometer ion channels in the AEM that can selectively separate ions with different sizes.
Collapse
Affiliation(s)
- Quan Chen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yuyang Yao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Junbin Liao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Junhua Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jingwen Xu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Tongtong Wang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yuanyuan Tang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yanqing Xu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Huimin Ruan
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jiangnan Shen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
12
|
Gomez-Lopez A, Ayensa N, Grignard B, Irusta L, Calvo I, Müller AJ, Detrembleur C, Sardon H. Enhanced and Reusable Poly(hydroxy urethane)-Based Low Temperature Hot-Melt Adhesives. ACS POLYMERS AU 2022; 2:194-207. [PMID: 35698472 PMCID: PMC9185748 DOI: 10.1021/acspolymersau.1c00053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 11/28/2022]
Abstract
![]()
Poly(hydroxy urethane)s
(PHUs) based on 5-membered cyclic carbonates
have emerged as sustainable alternatives to conventional isocyanate-based
polyurethanes. However, while from the point of view of sustainability
they represent an improvement, their properties are still not competitive
with conventional polyurethanes. In this work, the potential of PHUs
as reversible hot-melt adhesives is discussed. We found that with
a judicious choice of reagents (i.e., the dicyclic carbonate and diamine),
the detrimental hydrogen bonding between the soft segment of the chains
and the pendant hydroxyl groups was partially avoided, thus imparting
PHUs with hot-melt adhesion properties (i.e., adhesion at elevated
temperatures and cohesiveness at a temperature lower than Tg/Tm). The importance
of a balanced hard to soft segment ratio, along with the relevance
of the chain extender in the final properties, is highlighted. Addition
of aliphatic diamines (HMDA, 1,12-DAD) resulted in rubbery materials,
while the employment of cycloaliphatic (CBMA) or aromatic ones (MXDA,
PXDA) led to materials with hot-melt adhesive properties. The thermoreversibility
of all compositions was assessed by rebonding specimens after lap-shear
tests. Lap-shear strength values that were comparable to the virgin
adhesives were observed. The breaking and reformation of hydrogen
bonding interactions was demonstrated by FTIR measurements at different
temperatures, as well as by rheological frequency sweep experiments.
In order to mitigate the negative impact of the low molar mass PHUs
and to enhance the service temperature of the adhesives, a hybrid
PHU was prepared by adding a small amount of an epoxy resin, which
acts as a cross-linker. These hybrid PHUs maintain the thermoreversibility
displayed by thermoplastic PHUs while providing better adhesion at
elevated temperatures. We believe that this work provides some important
insights into the design of PHU-based hot-melt adhesives.
Collapse
Affiliation(s)
- Alvaro Gomez-Lopez
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Naroa Ayensa
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Bruno Grignard
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, University of Liège, allée du 6 août, Building B6A, Agora Square, 4000 Liège, Belgium
| | - Lourdes Irusta
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Iñigo Calvo
- ORIBAY Group Automotive S.L. R&D Department, Portuetxe bidea 18, 20018 Donostia-San Sebastián, Spain
| | - Alejandro J. Müller
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Christophe Detrembleur
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, University of Liège, allée du 6 août, Building B6A, Agora Square, 4000 Liège, Belgium
| | - Haritz Sardon
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| |
Collapse
|
13
|
Gomez-Lopez A, Elizalde F, Calvo I, Sardon H. Trends in non-isocyanate polyurethane (NIPU) development. Chem Commun (Camb) 2021; 57:12254-12265. [PMID: 34709246 DOI: 10.1039/d1cc05009e] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The transition towards safer and more sustainable production of polymers has led to a growing body of academic research into non-isocyanate polyurethanes (NIPUs) as potential replacements for conventional, isocyanate-based polyurethane materials. This perspective article focuses on the opportunities and current limitations of NIPUs produced by the reaction between biobased cyclic carbonates with amines, which offers an interesting pathway to renewable NIPUs. While it was initially thought that due to the similarities in the chemical structure, NIPUs could be used to directly replace conventional polyurethanes (PU), this has proven to be more challenging to achieve in practice. As a result, and in spite of the vast amount of academic research into this topic, the market size of NIPUs remains negligible. In this perspective, we will emphasize the main limitations of NIPUs in comparison to conventional PUs and the most significant advances made by others and us to overcome these limitations. Finally, we provide our personal view of where research should be directed to promote the transition from the academic to the industrial sector.
Collapse
Affiliation(s)
- Alvaro Gomez-Lopez
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018, Donostia-San Sebastián, Spain.
| | - Fermin Elizalde
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018, Donostia-San Sebastián, Spain.
| | - Iñigo Calvo
- ORIBAY Group Automotive S.L. R&D Department, Portuetxe bidea 18, 20018, Donostia-San Sebastián, Spain
| | - Haritz Sardon
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018, Donostia-San Sebastián, Spain.
| |
Collapse
|
14
|
Sessini V, Thai CN, Amorín H, Jiménez R, Samuel C, Caillol S, Cornil J, Hoyas S, Barrau S, Dubois P, Leclère P, Raquez JM. Solvent-Free Design of Biobased Non-isocyanate Polyurethanes with Ferroelectric Properties. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2021; 9:14946-14958. [PMID: 34777926 PMCID: PMC8579420 DOI: 10.1021/acssuschemeng.1c05380] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/13/2021] [Indexed: 06/13/2023]
Abstract
Increasing energy autonomy and lowering dependence on lithium-based batteries are more and more appealing to meet our current and future needs of energy-demanding applications such as data acquisition, storage, and communication. In this respect, energy harvesting solutions from ambient sources represent a relevant solution by unravelling these challenges and giving access to an unlimited source of portable/renewable energy. Despite more than five decades of intensive study, most of these energy harvesting solutions are exclusively designed from ferroelectric ceramics such as Pb(Zr,Ti)O3 and/or ferroelectric polymers such as polyvinylidene fluoride and its related copolymers, but the large implementation of these piezoelectric materials into these technologies is environmentally problematic, related with elevated toxicity and poor recyclability. In this work, we reveal that fully biobased non-isocyanate polyurethane-based materials could afford a sustainable platform to produce piezoelectric materials of high interest. Interestingly, these non-isocyanate polyurethanes (NIPUs) with ferroelectric properties could be successfully synthesized using a solvent-free reactive extrusion process on the basis of an aminolysis reaction between resorcinol bis-carbonate and different diamine extension agents. Structure-property relationships were established, indicating that the ferroelectric behavior of these NIPUs depends on the nanophase separation inside these materials. These promising results indicate a significant potential for fulfilling the requirements of basic connected sensors equipped with low-power communication technologies.
Collapse
Affiliation(s)
- Valentina Sessini
- Laboratory
of Polymeric and Composite Materials, Center of Innovation and Research
in Materials and Polymers (CIRMAP), University
of Mons—UMONS, Place du Parc 23, 7000 Mons, Belgium
| | - Cuong Nguyen Thai
- Laboratory
for Chemistry of Novel Materials (SCMN), Center of Innovation and
Research in Materials and Polymers (CIRMAP), University of Mons—UMONS, Place du Parc 23, 7000 Mons, Belgium
- Université
de Lille, CNRS, INRAE, Centrale Lille, UMR 8207—UMET—Unité
Matériaux et Transformations, F-59000 Lille, France
| | - Harvey Amorín
- Instituto
de Ciencia de Materiales de Madrid (ICMM), CSIC, Cantoblanco, 28049 Madrid, Spain
| | - Ricardo Jiménez
- Instituto
de Ciencia de Materiales de Madrid (ICMM), CSIC, Cantoblanco, 28049 Madrid, Spain
| | - Cédric Samuel
- IMT
Lille Douai, Institut Mines-Télécom, Univ. Lille, Centre
for Materials and Processes, F-59000 Lille, France
| | - Sylvain Caillol
- ICGM,
Université
de Montpellier, CNRS, ENSCM, UMR 5253, Place Eugène Bataillon CC 1700-Bâtiment
17, 34095 Montpellier
cedex 5, France
| | - Jérôme Cornil
- Laboratory
for Chemistry of Novel Materials (SCMN), Center of Innovation and
Research in Materials and Polymers (CIRMAP), University of Mons—UMONS, Place du Parc 23, 7000 Mons, Belgium
| | - Sébastien Hoyas
- Laboratory
for Chemistry of Novel Materials (SCMN), Center of Innovation and
Research in Materials and Polymers (CIRMAP), University of Mons—UMONS, Place du Parc 23, 7000 Mons, Belgium
- Organic
Synthesis & Mass Spectrometry Laboratory, Interdisciplinary Center
for Mass Spectrometry (CISMa), Center of Innovation and Research in
Materials and Polymers (CIRMAP), University of Mons—UMONS, Place du Parc 23, 7000 Mons, Belgium
| | - Sophie Barrau
- Université
de Lille, CNRS, INRAE, Centrale Lille, UMR 8207—UMET—Unité
Matériaux et Transformations, F-59000 Lille, France
| | - Philippe Dubois
- Laboratory
of Polymeric and Composite Materials, Center of Innovation and Research
in Materials and Polymers (CIRMAP), University
of Mons—UMONS, Place du Parc 23, 7000 Mons, Belgium
| | - Philippe Leclère
- Laboratory
for Chemistry of Novel Materials (SCMN), Center of Innovation and
Research in Materials and Polymers (CIRMAP), University of Mons—UMONS, Place du Parc 23, 7000 Mons, Belgium
| | - Jean-Marie Raquez
- Laboratory
of Polymeric and Composite Materials, Center of Innovation and Research
in Materials and Polymers (CIRMAP), University
of Mons—UMONS, Place du Parc 23, 7000 Mons, Belgium
| |
Collapse
|
15
|
Younes GR, Marić M. Bio-based Thermoplastic Polyhydroxyurethanes Synthesized from the Terpolymerization of a Dicarbonate and Two Diamines: Design, Rheology, and Application in Melt Blending. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01640] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Georges R. Younes
- Department of Chemical Engineering, McGill University, Montreal, QC H3A 0C5, Canada
| | - Milan Marić
- Department of Chemical Engineering, McGill University, Montreal, QC H3A 0C5, Canada
| |
Collapse
|
16
|
Zhao B, Wei K, Wang L, Zheng S. Poly(hydroxyl urethane)s with Double Decker Silsesquioxanes in the Main Chains: Synthesis, Shape Recovery, and Reprocessing Properties. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01976] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Bingjie Zhao
- Department of Polymer Science and Engineering and the State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Kun Wei
- Department of Polymer Science and Engineering and the State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Lei Wang
- Department of Polymer Science and Engineering and the State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Sixun Zheng
- Department of Polymer Science and Engineering and the State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
17
|
Chen X, Li L, Torkelson JM. Recyclable polymer networks containing hydroxyurethane dynamic cross-links: Tuning morphology, cross-link density, and associated properties with chain extenders. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.121604] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
18
|
He X, Xu X, Wan Q, Bo G, Yan Y. Solvent- and Catalyst-free Synthesis, Hybridization and Characterization of Biobased Nonisocyanate Polyurethane (NIPU). Polymers (Basel) 2019; 11:E1026. [PMID: 31185687 PMCID: PMC6631551 DOI: 10.3390/polym11061026] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/04/2019] [Accepted: 06/06/2019] [Indexed: 11/16/2022] Open
Abstract
Nonisocyanate polyurethane (NIPU) is a research hotspot in polyurethane applications because it does not use phosgene. Herein, a novel method of solvent- and catalyst-free synthesis of a hybrid nonisocyanate polyurethane (HNIPU) is proposed. First, four diamines were used to react with ethylene carbonate to obtain four bis(hydroxyethyloxycarbonylamino)alkane (BHA). Then, BHA reacted with dimer acid under condensation in the melt to prepare four nonisocynate polyurethane prepolymers. Further, the HNIPUs were obtained by crosslinking prepolymers and resin epoxy and cured with the program temperature rise. In addition, four amines and two resin epoxies were employed to study the effects and regularity of HNIPUs. According to the results from thermal and dynamic mechanical analyses, those HNIPUs showed a high degree of thermal stability, and the highest 5% weight loss reached about 350 °C. More importantly, the utilization of these green raw materials accords with the concept of sustainable development. Further, the synthetic method and HNIPUs don't need isocyanates, catalysts, or solvents.
Collapse
Affiliation(s)
- Xin He
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Xiaoling Xu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Qian Wan
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Guangxu Bo
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Yunjun Yan
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
19
|
|
20
|
Chen X, Li L, Wei T, Torkelson JM. Reprocessable Polymer Networks Designed with Hydroxyurethane Dynamic Cross‐links: Effect of Backbone Structure on Network Morphology, Phase Segregation, and Property Recovery. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201900083] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Xi Chen
- Department of Chemical and Biological Engineering Northwestern University Evanston IL 60208 USA
| | - Lingqiao Li
- Department of Chemical and Biological Engineering Northwestern University Evanston IL 60208 USA
| | - Tong Wei
- Department of Chemical and Biological Engineering Northwestern University Evanston IL 60208 USA
| | - John M. Torkelson
- Department of Chemical and Biological Engineering Northwestern University Evanston IL 60208 USA
- Department of Materials Science and Engineering Northwestern University Evanston IL 60208 USA
| |
Collapse
|
21
|
Kim HN, Lee DW, Ryu H, Song GS, Lee DS. Preparation and Characterization of Isosorbide-Based Self-Healable Polyurethane Elastomers with Thermally Reversible Bonds. Molecules 2019; 24:E1061. [PMID: 30889870 PMCID: PMC6471067 DOI: 10.3390/molecules24061061] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/14/2019] [Accepted: 03/14/2019] [Indexed: 11/17/2022] Open
Abstract
Polyurethane (PU) is a versatile polymer used in a wide range of applications. Recently, imparting PU with self-healing properties has attracted much interest to improve the product durability. The self-healing mechanism conceivably occurs through the existence of dynamic reversible bonds over a specific temperature range. The present study investigates the self-healing properties of 1,4:3,6-dianhydrohexitol-based PUs prepared from a prepolymer of poly(tetra-methylene ether glycol) and 4,4'-methylenebis(phenyl isocyanate) with different chain extenders (isosorbide or isomannide). PU with the conventional chain extender 1,4-butanediol was prepared for comparison. The urethane bonds in 1,4:3,6-dianhydrohexitol-based PUs were thermally reversible (as confirmed by the generation of isocyanate peaks observed by Fourier transform infrared spectroscopy) at mildly elevated temperatures and the PUs showed good mechanical properties. Especially the isosorbide-based polyurethane showed potential self-healing ability under mild heat treatment, as observed in reprocessing tests. It is inferred that isosorbide, bio-based bicyclic diol, can be employed as an efficient chain extender of polyurethane prepolymers to improve self-healing properties of polyurethane elastomers via reversible features of the urethane bonds.
Collapse
Affiliation(s)
- Han-Na Kim
- Division of Semiconductor and Chemical Engineering, Chonbuk National University, 567 Baekjedaero, Deokjin-gu, Jeonju 54896, Korea.
| | - Dae-Woo Lee
- Division of Semiconductor and Chemical Engineering, Chonbuk National University, 567 Baekjedaero, Deokjin-gu, Jeonju 54896, Korea.
| | - Hoon Ryu
- Industrial Biotechnology Program, Chemical R&D Center, Samyang Corporation, Daedeok-daero 730, Yuseong-gu, Daejeon 34055, Korea.
| | - Gwang-Seok Song
- Industrial Biotechnology Program, Chemical R&D Center, Samyang Corporation, Daedeok-daero 730, Yuseong-gu, Daejeon 34055, Korea.
| | - Dai-Soo Lee
- Division of Semiconductor and Chemical Engineering, Chonbuk National University, 567 Baekjedaero, Deokjin-gu, Jeonju 54896, Korea.
| |
Collapse
|
22
|
Thermal stability and decomposition behaviors of segmented copolymer poly(urethane-urea-amide). JOURNAL OF POLYMER RESEARCH 2018. [DOI: 10.1007/s10965-018-1634-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Affiliation(s)
- Harshit Gupta
- Coatings Research InstituteEastern Michigan University Ypsilanti, MI 48197 USA
| | - John Texter
- Coatings Research InstituteEastern Michigan University Ypsilanti, MI 48197 USA
| |
Collapse
|
24
|
A solvent-free route to non-isocyanate poly(carbonate urethane) with high molecular weight and competitive mechanical properties. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.08.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Lee SH, Shin SR, Lee DS. Sorbitol as a Chain Extender of Polyurethane Prepolymers to Prepare Self-Healable and Robust Polyhydroxyurethane Elastomers. Molecules 2018; 23:E2515. [PMID: 30274385 PMCID: PMC6222304 DOI: 10.3390/molecules23102515] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 09/28/2018] [Accepted: 09/29/2018] [Indexed: 12/03/2022] Open
Abstract
A self-healable polyhydroxyurethane (S-PU) was synthesized from sorbitol, a biomass of polyhydric alcohol, by a simple process that is suitable for practical applications. In the synthesis, only two primary hydroxyl groups of sorbitol were considered for the chain extension of the polyurethane (PU) prepolymers to introduce free hydroxyl groups in PU. As a control, conventional PU was synthesized by hexane diol mediated chain extension. Relative to the control, S-PU showed excellent intrinsic self-healing property via exchange reaction, which was facilitated by the nucleophilic addition of the secondary hydroxyl groups without any catalytic assistance and improved tensile strength due to the enhanced hydrogen bonding. We also investigated the effect of the exchange reaction on the topological, mechanical, and rheological properties of S-PU. The suggested synthetic framework for S-PU is a promising alternative to the conventional poly hydroxyurethane, in which cyclic carbonates are frequently reacted with amines. As such, it is a facile and environmentally friendly material for use in coatings, adhesives, and elastomers.
Collapse
Affiliation(s)
- Sang Hyub Lee
- Department of Semiconductor and Chemical Engineering, Chonbuk National University, 567 Baekje-daero, Deokjini-gu, Jeonju 54896, Korea.
| | - Se-Ra Shin
- Department of Semiconductor and Chemical Engineering, Chonbuk National University, 567 Baekje-daero, Deokjini-gu, Jeonju 54896, Korea.
| | - Dai-Soo Lee
- Department of Semiconductor and Chemical Engineering, Chonbuk National University, 567 Baekje-daero, Deokjini-gu, Jeonju 54896, Korea.
| |
Collapse
|
26
|
Li L, Marrou SR, Torkelson JM. Remarkable glass transition breadths up to 120 K exhibited by block-gradient copolymers and by gradient copolymers plasticized by oligomer. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.07.058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
27
|
Synthesis and characterization of sustainable polyurethane foams based on polyhydroxyls with different terminal groups. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.06.077] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
28
|
Jin K, Leitsch EK, Chen X, Heath WH, Torkelson JM. Segmented Thermoplastic Polymers Synthesized by Thiol–Ene Click Chemistry: Examples of Thiol–Norbornene and Thiol–Maleimide Click Reactions. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00573] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
29
|
Sun Y, Wang Q, Zhang S, Li H, Zhang J, Li D, Li W. Synthesis of aromatic-doped polycaprolactone with tunable degradation behavior. Polym Chem 2018. [DOI: 10.1039/c8py00374b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A novel aromatic-doped polycaprolactone (Aro-PCL) material was synthesized through a facile PCL aminolysis-condensation polymerization incorporating the aromatic moiety to PCL chain and assessed by focusing on the dynamic aggregation and crystalline microdomains associated with the in vitro degradation properties, mechanical performance and biocompatibility.
Collapse
Affiliation(s)
- Yawei Sun
- School of Chemical Engineering & Technology
- Tianjin University
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
- Tianjin 300350
- P. R. China
| | - Qiuyan Wang
- Key Laboratory of Cardiovascular Remodeling and Function Research
- Chinese Ministry of Education and Chinese Ministry of Health
- Qilu Hospital
- Shandong University
- Jinan 250061
| | - Shuying Zhang
- Key Laboratory of Cardiovascular Remodeling and Function Research
- Chinese Ministry of Education and Chinese Ministry of Health
- Qilu Hospital
- Shandong University
- Jinan 250061
| | - Hao Li
- Key Laboratory of Cardiovascular Remodeling and Function Research
- Chinese Ministry of Education and Chinese Ministry of Health
- Qilu Hospital
- Shandong University
- Jinan 250061
| | - Jinli Zhang
- School of Chemical Engineering & Technology
- Tianjin University
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
- Tianjin 300350
- P. R. China
| | - Daqing Li
- Key Laboratory of Cardiovascular Remodeling and Function Research
- Chinese Ministry of Education and Chinese Ministry of Health
- Qilu Hospital
- Shandong University
- Jinan 250061
| | - Wei Li
- School of Chemical Engineering & Technology
- Tianjin University
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
- Tianjin 300350
- P. R. China
| |
Collapse
|
30
|
Beniah G, Fortman DJ, Heath WH, Dichtel WR, Torkelson JM. Non-Isocyanate Polyurethane Thermoplastic Elastomer: Amide-Based Chain Extender Yields Enhanced Nanophase Separation and Properties in Polyhydroxyurethane. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00765] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
| | - David J. Fortman
- Department
of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | | | | | | |
Collapse
|
31
|
Nozaki S, Hirai T, Higaki Y, Yoshinaga K, Kojio K, Takahara A. Effect of chain architecture of polyol with secondary hydroxyl group on aggregation structure and mechanical properties of polyurethane elastomer. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.03.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
32
|
Beniah G, Chen X, Uno BE, Liu K, Leitsch EK, Jeon J, Heath WH, Scheidt KA, Torkelson JM. Combined Effects of Carbonate and Soft-Segment Molecular Structures on the Nanophase Separation and Properties of Segmented Polyhydroxyurethane. Macromolecules 2017. [DOI: 10.1021/acs.macromol.6b02513] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
| | | | | | | | | | - Junho Jeon
- The Dow Chemical
Company, Freeport, Texas 77541, United States
| | | | | | | |
Collapse
|
33
|
Beniah G, Heath WH, Jeon J, Torkelson JM. Tuning the properties of segmented polyhydroxyurethanes via chain extender structure. J Appl Polym Sci 2017. [DOI: 10.1002/app.44942] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Goliath Beniah
- Department of Chemical and Biological Engineering; Northwestern University; Evanston Illinois 60208
| | | | - Junho Jeon
- The Dow Chemical Company; Freeport Texas 77541
| | - John M. Torkelson
- Department of Chemical and Biological Engineering; Northwestern University; Evanston Illinois 60208
- Department of Materials Science and Engineering; Northwestern University; Evanston Illinois 60208
| |
Collapse
|
34
|
Chen X, Li L, Jin K, Torkelson JM. Reprocessable polyhydroxyurethane networks exhibiting full property recovery and concurrent associative and dissociative dynamic chemistry via transcarbamoylation and reversible cyclic carbonate aminolysis. Polym Chem 2017. [DOI: 10.1039/c7py01160a] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We developed reprocessable polyhydroxyurethane (PHU) networks with full property recovery and incorporating both associative and dissociative dynamic chemistry.
Collapse
Affiliation(s)
- Xi Chen
- Department of Chemical and Biological Engineering
- Northwestern University
- Evanston
- USA
| | - Lingqiao Li
- Department of Chemical and Biological Engineering
- Northwestern University
- Evanston
- USA
| | - Kailong Jin
- Department of Chemical and Biological Engineering
- Northwestern University
- Evanston
- USA
| | - John M. Torkelson
- Department of Chemical and Biological Engineering
- Northwestern University
- Evanston
- USA
- Department of Materials Science and Engineering
| |
Collapse
|