1
|
Yasin S, Hussain M, Zheng Q, Song Y. Large amplitude oscillatory rheology of silica and cellulose nanocrystals filled natural rubber compounds. J Colloid Interface Sci 2020; 588:602-610. [PMID: 33162040 DOI: 10.1016/j.jcis.2020.10.094] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/13/2020] [Accepted: 10/23/2020] [Indexed: 12/13/2022]
Abstract
Nanoparticles reinforce rubbers and enhance Payne effect for the compounds experiencing large amplitude oscillatory shear deformation. Herein the effects of silica and cellulose nanocrystals on the Payne effect of natural rubber compounds are investigated by stress decomposition methods for clarifying the elastic and viscous nonlinearities varying with filler content and composition. The Payne effect is in general characterized by intercycle strain softening and shear thinning behaviors and intracycle hardening and thinning behaviors at high strain (strain rate) amplitudes while the filler influences the behaviors markedly at intermediate strain (rate) amplitudes. Especially, the addition of cellulose nanocrystals in the silica filled compounds improves the elastic nonlinearity and greatly weakens the viscous nonlinearity, providing a perspective on understanding the Payne effect for manufacturing high-performance rubber materials.
Collapse
Affiliation(s)
- Sohail Yasin
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Munir Hussain
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Qiang Zheng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yihu Song
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
2
|
Fan X, Wen F, Shi X, Yang L, Hussain M, Song Y, Zheng Q. Roles played by novolac resin on rubber compounding, reinforcement and nonlinear rheological behaviors. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122895] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
3
|
You W, Yu W. Slow Linear Viscoelastic Relaxation of Polymer Nanocomposites: Contribution from Confined Diffusion of Nanoparticles. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01538] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Wei You
- Advanced Rheology Institute, Department of Polymer Science and Engineering, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Wei Yu
- Advanced Rheology Institute, Department of Polymer Science and Engineering, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
4
|
Li S, Tian H, Zhang B, Hu GH, Liu CY, Zhang L, Tian M. Nonlinear and linear viscoelastic behaviors of thermoplastic vulcanizates containing rubber nanoparticle agglomerates. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.121793] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Zhang Q, Xu H, Song Y, Zheng Q. Influence of hydroxyl-terminated polybutadiene liquid on rheology of fumed silica filled cis-polybutadiene rubber. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.121709] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
6
|
Zhang Q, Xu H, Song Y, Zheng Q. Rheological behavior of fumed silica filled polyethylene oxide. ACTA ACUST UNITED AC 2019. [DOI: 10.1002/polb.24794] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Qingxu Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering; Zhejiang University; Hangzhou, 310027 China
| | - Huilong Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering; Zhejiang University; Hangzhou, 310027 China
| | - Yihu Song
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering; Zhejiang University; Hangzhou, 310027 China
| | - Qiang Zheng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering; Zhejiang University; Hangzhou, 310027 China
| |
Collapse
|
7
|
Dispersion state of carbon black in polystyrene produced with different dispersion media and its effects on composite rheological properties. Polym J 2018. [DOI: 10.1038/s41428-018-0149-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
8
|
Ma F, Xu B, Song Y, Zheng Q. Influence of molecular weight on molecular dynamics and dynamic rheology of polypropylene glycol filled with silica. RSC Adv 2018; 8:31972-31978. [PMID: 35547494 PMCID: PMC9085909 DOI: 10.1039/c8ra04497j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 08/03/2018] [Indexed: 11/21/2022] Open
Abstract
Molecular weight strongly influences the molecular dynamics and rheological responses of nanocomposites, which is far from being well understood. Herein molecular dynamics and rheological behaviors of hydrophilic fumed silica filled unentangled polypropylene glycol (PPG) were investigated as a function of weight averaged molecular weight (M w) of PPG and volume fraction (∅) of silica. It is shown that M w does not affect the glassy layers surrounding the nanoparticles and the segmental dynamics of the mobile PPG phase. On the other hand, the mobile PPG phase in the highly filled nanocomposites exhibits an abnormal "more fragile" to "stronger" transition with increasing M w. The reinforcement and thinning behaviors are stronger in lower-M w nanocomposites with the "more fragile" mobile PPG phase. The results suggest that reinforcement of nanocomposites affects the dynamic fragility of the mobile phase of the matrix.
Collapse
Affiliation(s)
- Furui Ma
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University Hangzhou 310027 China
| | - Bei Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University Hangzhou 310027 China
| | - Yihu Song
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University Hangzhou 310027 China
| | - Qiang Zheng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University Hangzhou 310027 China
| |
Collapse
|
9
|
|
10
|
Song Y, Huang D. Linear rheology of natural rubber compounds filled with silica, short nylon fiber or both. POLYMER 2018. [DOI: 10.1016/j.polymer.2017.11.073] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
|
12
|
Song YH, Zeng LB, Zheng Q. Understanding the reinforcement and dissipation of natural rubber compounds filled with hybrid filler composed of carbon black and silica. CHINESE JOURNAL OF POLYMER SCIENCE 2017. [DOI: 10.1007/s10118-017-1987-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Song Y, Zeng L, Guan A, Zheng Q. Time-concentration superpositioning principle accounting for reinforcement and dissipation of multi-walled carbon nanotubes filled polystyrene melts. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.06.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Song Y, Zeng L, Zheng Q. Reconsideration of the Rheology of Silica Filled Natural Rubber Compounds. J Phys Chem B 2017; 121:5867-5875. [PMID: 28520426 DOI: 10.1021/acs.jpcb.7b02760] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
There is substantial progress along with giant debate in reinforcement mechanisms in relation to structured filler network and heterogeneously retarded polymer dynamics, while the dissipation behaviors have never been clarified for nanoparticle filled polymers. Herein dynamic rheological behaviors of silica filled natural rubber were investigated. Master curves of linear rheology in the hydrodynamic regime and those of the nonlinear Payne effect at a predetermined frequency were created, disclosing a leading role of dynamically retarded bulk rubbery phase to the hydrodynamic regime and a leading role of molecular disentanglement in the bulk phase to the Payne effect. The methodology is able to account for both reinforcement and dissipation of the compounds as a function of filler content. Furthermore, a frequency-dependent hydrodynamic to non-hydrodynamic transition is revealed, revealing the importance of the relaxation of chains in the bulk phase to both reinforcement and dissipation of the compounds. It is suggested that the dynamics of the bulk phase play a critical role for the rheology in the hydrodynamic regime while the fractal filler aggregates become dominative only in the terminal non-hydrodynamic regime where the bulk phase relaxes sufficiently.
Collapse
Affiliation(s)
- Yihu Song
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University , Hangzhou 310027, China
| | - Lingbin Zeng
- Shanghai Aerospace System Engineering Institute , Shanghai 201110, China
| | - Qiang Zheng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University , Hangzhou 310027, China
| |
Collapse
|