1
|
Mysiukiewicz O, Szulc J, Miklaszewski A. The Influence of Horsetail ( Equisetum arvense L.) Powder and Horsetail-Based Silica on the Crystallization Kinetics of Polylactide. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5697. [PMID: 39685132 DOI: 10.3390/ma17235697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024]
Abstract
Biogenic silica (SiO2) sourced from living organisms, especially plants such as rice and other cereals, has recently been successfully applied in different polymeric compositions. Another rich source of biogenic silica is common horsetail (Equisetum arvense L.), containing up to 25% SiO2 in the dry matter. In this study, biogenic silica was obtained from horsetail powder by acid leaching in sulfuric acid and calcination at 400 °C. The analysis, including measurements of specific surface area using the Brunauer-Emmett-Teller method, assessment of crystallinity by X-ray diffraction, as well as chemical content analysis by Fourier-transform infrared spectroscopy showed that high-purity, high-surface mesoporous silica was obtained. The biogenic silica and horsetail powders were also introduced to polylactide (PLA) to determine their influence on the polymer's crystallization, which was studied in both non-isothermal and isothermal conditions by differential scanning calorimetry. The crystallization parameters were calculated according to the Avrami method based on isothermal crystallization curves at 100, 110 and 120 °C. The crystalline structures were observed by optical microscopy in polarized light. It was found that both fillers improve the crystallization of PLA, especially in low-supercooling conditions, so they can be successfully utilized in industrial applications, when high crystallinity of polylactide is needed.
Collapse
Affiliation(s)
- Olga Mysiukiewicz
- Institute of Materials Technology, Poznan University of Technology, Piotrowo 3, 61-138 Poznan, Poland
| | - Joanna Szulc
- Department of Food Industry Technology and Engineering, Bydgoszcz University of Science and Technology, Seminaryjna 3, 85-326 Bydgoszcz, Poland
| | - Andrzej Miklaszewski
- Institute of Materials Science and Engineering, Poznan University of Technology, Jana Pawla II 24, 61-138 Poznan, Poland
| |
Collapse
|
2
|
Yang B, Wan X. Trace sorbitol-modified nano-silica: Towards nano-nucleation for poly(L-lactic acid). Int J Biol Macromol 2024; 274:133236. [PMID: 38897511 DOI: 10.1016/j.ijbiomac.2024.133236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/26/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024]
Abstract
Nucleating agents, especially those with small particle sizes, are preferred to boost the nucleation density and crystallinity of poly(lactic acid) (PLA) due to its weak crystallization capability. Organophilicly modified nanofillers hardly alter the nucleation and crystallinity of non-isothermally crystallized PLA. Herein, nano-silica adsorbed trace D-sorbitol (m-SiO2) as a heterogeneous nucleating agent was melt-mixed with poly(L-lactic acid) (PLLA), and the isothermal and non-isothermal crystallization behavior, as well as crystallization kinetics, were investigated. Transmission electron microscopy (TEM) revealed that m-SiO2 was uniformly dispersed in the PLA matrix as 100-300 nm clusters. Differential scanning calorimetry (DSC) and polarized optical microscopy (POM) showed that the nucleation rate and density of the non-isothermally crystallized PLLA/m-SiO2 composites were significantly improved. Despite the fact that m-SiO2 does not raise the overall non-isothermal crystallization rate, the crystallization temperature and crystallinity of the PLLA/3%m-SiO2 composite increased from 97.2 °C and 6.8 % for neat PLLA to 108.2 °C and 48.6 % (10 °C/min cooling rate), respectively. The Avrami exponent n of isothermal crystallization remains unchanged, while the crystallization rate increases dramatically. Both isothermal and non-isothermal crystallization have increased activation energies. The heat deflection temperature increased from 59 °C of neat PLLA to 152 °C with a 50 % increase in impact strength.
Collapse
Affiliation(s)
- Biao Yang
- Department of Materials Science and Engineering, Beijing Technology and Business University, Beijing 100048, China.
| | - Xinyu Wan
- Department of Materials Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
3
|
Kurtjak M, Maček Kržmanc M, Spreitzer M, Vukomanović M. Nanogallium-poly(L-lactide) Composites with Contact Antibacterial Action. Pharmaceutics 2024; 16:228. [PMID: 38399282 PMCID: PMC10893416 DOI: 10.3390/pharmaceutics16020228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/28/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
In diverse biomedical and other applications of polylactide (PLA), its bacterial contamination and colonization are unwanted. For this reason, this biodegradable polymer is often combined with antibacterial agents or fillers. Here, we present a new solution of this kind. Through the process of simple solvent casting, we developed homogeneous composite films from 28 ± 5 nm oleic-acid-capped gallium nanoparticles (Ga NPs) and poly(L-lactide) and characterized their detailed morphology, crystallinity, aqueous wettability, optical and thermal properties. The addition of Ga NPs decreased the ultraviolet transparency of the films, increased their hydrophobicity, and enhanced the PLA structural ordering during solvent casting. Albeit, above the glass transition, there is an interplay of heterogeneous nucleation and retarded chain mobility through interfacial interactions. The gallium content varied from 0.08 to 2.4 weight %, and films with at least 0.8% Ga inhibited the growth of Pseudomonas aeruginosa PAO1 in contact, while 2.4% Ga enhanced the effect of the films to be bactericidal. This contact action was a result of unwrapping the top film layer under biological conditions and the consequent bacterial contact with the exposed Ga NPs on the surface. All the tested films showed good cytocompatibility with human HaCaT keratinocytes and enabled the adhesion and growth of these skin cells on their surfaces when coated with poly(L-lysine). These properties make the nanogallium-polyl(L-lactide) composite a promising new polymer-based material worthy of further investigation and development for biomedical and pharmaceutical applications.
Collapse
Affiliation(s)
- Mario Kurtjak
- Jožef Stefan Institute (JSI), Jamova cesta 39, 1000 Ljubljana, Slovenia; (M.M.K.); (M.S.); (M.V.)
| | | | | | | |
Collapse
|
4
|
THE EFFECT OF DISPERSION TIME ON THE STRUCTURE AND THERMOPHYSICAL PROPERTIES OF SYSTEMS BASED ON POLYETHYLENE GLYCOL AND MONTMORILLONITE. Polym J 2022. [DOI: 10.15407/polymerj.44.04.283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In this work, the effect of ultrasonic dispersion time on the structural and thermophysical properties of nanocomposites was studied. Model systems were made based on polyethylene glycol and montmorillonite. All samples had the same composition and filler content (5% by weight), the ultrasonic treatment time was from 5 to 12 minutes. The methods of wide-angle X-ray scattering and differential scanning calorimetry were used to establish the dependence of the properties of the systems on the dispersion time. Data analysis of the obtained results showed that the variation of ultrasonic dispersion time significantly affects the properties of polymer nanocomposites. As the mixing time increases, the interplanar distance of montmorillonite increases, which indicates an increase in the degree of intercalation of the polymer matrix. At the same time, the crystallinity of the nanocomposite decreases, which corresponds to the increase in the area of the polymer/filler boundary layer. The melting temperature of the nanocomposite increases with increasing dispersion time. This trend is a consequence of the complication of the thermal movement of polymer molecules due to the presence of a developed surface of the filler. It is shown that with an increase in the sonication time, the part of the immobilized amorphous fraction of the polymer increases. This is explained by the fact that the polymer intercalated in the interlayer space of montmorillonite loses its ability to cooperative movement, that is, to glass transition. It was established that the maximum improvement of system properties is observed at a dispersion time of 10 min. In this state, the montmorillonite particles are most stratified, which leads to the maximum increase in the area of the boundary layer. During further mixing, processes of aggregation of montmorillonite particles and destruction of polymer molecules occur, which leads to the loss of the desired properties of the nanocomposite. Finding the optimal mixing time of a polymer nanocomposite makes it possible to obtain the desired properties of systems with a defined composition.
Collapse
|
5
|
Cichosz S, Masek A, Piotrowska M. Characterization of the UV-aging and antimicrobial resistance of cellulose / ethylene-norbornene composites. Carbohydr Polym 2022; 289:119459. [DOI: 10.1016/j.carbpol.2022.119459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/24/2022] [Accepted: 04/01/2022] [Indexed: 11/02/2022]
|
6
|
Time and frequency domain dielectric spectroscopy for in-situ and ex-situ determination of amorphous fractions of isothermally cold-crystallized Polylactic acid. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03148-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Hydration and glass transition of hybrid non-isocyanate polyurethanes with POSS inclusions. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Polymer Nanocomposites: Role of modified filler content and interfacial interaction on crystallization. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2021.110894] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Benz J, Bonten C. Rigid Amorphous Fraction as an Indicator for Polymer-Polymer Interactions in Highly Filled Plastics. Polymers (Basel) 2021; 13:polym13193349. [PMID: 34641165 PMCID: PMC8512654 DOI: 10.3390/polym13193349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022] Open
Abstract
Above a percolation threshold a flow restriction has to be overcome by higher pressure in plastic processing. Besides amount and geometry of fillers, the interactions of polymer and filler are important. By differing the amorphous phase of polymers into a rigid amorphous and a mobile amorphous fraction, predictions about interactions are possible. The objective is the generation of a flow restriction and the combined investigation of polymer-particle interaction. SiO2 was used up to 50 vol.% in different spherical sizes in PLA and PP. A capillary-rheometer was used as a tool to create a yield point and by that investigations into the state of the flow restriction were possible. All produced compounds showed, in plate-plate rheometry, an increase in viscosity for lower shear rates and a significant change in the storage modulus. In DSC, hardly any specific rigid amorphous fraction was detectable, which suggests that there is a minor interaction between macromolecules and filler. This leads to the conclusion that the change in flow behavior is mainly caused by a direct interaction between the particles, even though they are theoretically too far away from each other. First images in the state of the yield point show a displacement of the particles against each other.
Collapse
|
10
|
Albozahid M, Naji HZ, Alobad ZK, Saiani A. TPU nanocomposites tailored by graphene nanoplatelets: the investigation of dispersion approaches and annealing treatment on thermal and mechanical properties. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03898-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
11
|
Kaseem M, Ur Rehman Z, Hossain S, Singh AK, Dikici B. A Review on Synthesis, Properties, and Applications of Polylactic Acid/Silica Composites. Polymers (Basel) 2021; 13:polym13183036. [PMID: 34577936 PMCID: PMC8467350 DOI: 10.3390/polym13183036] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 11/23/2022] Open
Abstract
Polylactic acid (PLA)/silica composites as multifunctional high-performance materials have been extensively examined in the past few years by virtue of their outstanding properties relative to neat PLA. The fabrication methods, such as melt-mixing, sol–gel, and in situ polymerization, as well as the surface functionalization of silica, used to improve the dispersion of silica in the polymer matrix are outlined. The rheological, thermal, mechanical, and biodegradation properties of PLA/silica nanocomposites are highlighted. The potential applications arising from the addition of silica nanoparticles into the PLA matrix are also described. Finally, we believe that a better understanding of the role of silica additive with current improvement strategies in the dispersion of this additive in the polymer matrix is the key for successful utilization of PLA/silica nanocomposites and to maximize their fit with industrial applications needs.
Collapse
Affiliation(s)
- Mosab Kaseem
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006, Korea
- Correspondence: (M.K.); (B.D.)
| | - Zeeshan Ur Rehman
- School of Materials Science & Engineering, Changwon National University, Changwon 641-773, Korea;
| | - Shakhawat Hossain
- Department of Industrial and Production Engineering, Jashore University of Science and Technology, Jashore 7408, Bangladesh;
| | - Ashish Kumar Singh
- Department of Applied Sciences, Bharati Vidyapeeth’s College of Engineering, New Delhi 110063, India;
| | - Burak Dikici
- Department of Metallurgical and Materials Engineering, Ataturk University, Erzurum 25240, Turkey
- Correspondence: (M.K.); (B.D.)
| |
Collapse
|
12
|
Kourtidou D, Klonos PA, Papadopoulos L, Kyritsis A, Bikiaris DN, Chrissafis K. Molecular mobility and crystallization of renewable poly(ethylene furanoate) in situ filled with carbon nanotubes and graphene nanoparticles. SOFT MATTER 2021; 17:5815-5828. [PMID: 34037062 DOI: 10.1039/d1sm00592h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We investigate the thermal transitions and molecular mobility in new nanocomposites of biobased poly(ethylene furanoate) (PEF), by calorimetry and dielectric spectroscopy, supplemented by X-ray diffraction, Fourier transform infra-red spectroscopy and polarized light microscopy. The emphasis is placed on the facilitation of the crystallization of PEF, which is in general low and slow due to structural limitations that result in poor nucleation. Tuning of the crystalline fraction (CF) and semicrystalline morphology are important for optimization of the mechanical performance and manipulation of the permeation of small molecules (e.g., in packaging applications). The nucleation and CF are successfully improved here by the in situ filling of PEF with 0.5-2.5 wt% of carbon nanotubes (CNTs) and graphene nanoplatelets (GNPs). The improvements are discussed in connection with weak or absent interfacial polymer-filler interactions. CNTs were found to be more effective in facilitating crystallization, as compared with GNPs, possibly due to their larger aspect ratio. The segmental dynamics of PEF are both accelerated and decelerated by the addition of GNP and CNT, respectively, with complex phenomena contributing to the effects, namely, nucleation, changes in molar mass and changes in the free volume. The molecular mobility of PEF is moderately affected 'directly' by the particles, whereas stronger effects are induced by crystallization (an indirect effect) and, furthermore, by the increase in the length of alkylene sequences on the chain. Local dynamics exhibit time scale disturbances when the temperature approaches that of the glass transition, which is proposed here to be a common characteristic in the case of mobilities originating from the polymer backbone for these as well as different polyesters. Despite the weak effects on molecular mobility, the role of the fillers as nucleating agents seems to be further exploitable in the frame of envisaged applications, as the use of such fillers in combination with thermal treatment offer possibilities for manipulating the semicrystalline morphology, ion transport and, subsequently, permeation of small molecules.
Collapse
Affiliation(s)
- Dimitra Kourtidou
- School of Physics, Advanced Material and Devices Laboratory, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece.
| | - Panagiotis A Klonos
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece. and Department of Physics, National Technical University of Athens, Zografou Campus, GR-15780, Athens, Greece
| | - Lazaros Papadopoulos
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece.
| | - Apostolos Kyritsis
- Department of Physics, National Technical University of Athens, Zografou Campus, GR-15780, Athens, Greece
| | - Dimitrios N Bikiaris
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece.
| | - Konstantinos Chrissafis
- School of Physics, Advanced Material and Devices Laboratory, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece.
| |
Collapse
|
13
|
Sarkar PK, Kandasubramanian B. Metals to polymer composites for submerged hull: a paradigm shift. POLYM-PLAST TECH MAT 2021. [DOI: 10.1080/25740881.2021.1930048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Pramit Kumar Sarkar
- Structural Composite Fabrication Laboratory, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced, Technology (DU), Ministry of Defence, Girinagar, Pune, India
- Submarine Design Department – East Yard, Mazagon Dock Shipbuilders Ltd, Mumbai, Dockyard Road, Mazgaon, India
| | - Balasubramanian Kandasubramanian
- Structural Composite Fabrication Laboratory, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced, Technology (DU), Ministry of Defence, Girinagar, Pune, India
| |
Collapse
|
14
|
Barletta M, Pizzi E. Optimizing crystallinity of engineered poly(lactic acid)/poly(butylene succinate) blends: The role of single and multiple nucleating agents. J Appl Polym Sci 2021. [DOI: 10.1002/app.50236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | - Elisa Pizzi
- Dipartimento di Ingegneria Università degli Studi Roma Tre Rome Italy
| |
Collapse
|
15
|
Papadopoulos L, Klonos PA, Terzopoulou Z, Psochia E, Sanusi OM, Hocine NA, Benelfellah A, Giliopoulos D, Triantafyllidis K, Kyritsis A, Bikiaris DN. Comparative study of crystallization, semicrystalline morphology, and molecular mobility in nanocomposites based on polylactide and various inclusions at low filler loadings. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123457] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
PEG-POSS Star Molecules Blended in Polyurethane with Flexible Hard Segments: Morphology and Dynamics. Molecules 2020; 26:molecules26010099. [PMID: 33379358 PMCID: PMC7795770 DOI: 10.3390/molecules26010099] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 01/27/2023] Open
Abstract
A star polymer with a polyhedral oligomeric silsesquioxanne (POSS) core and poly(ethylene glycol) (PEG) vertex groups is incorporated in a polyurethane with flexible hard segments in-situ during the polymerization process. The blends are studied in terms of morphology, molecular dynamics, and charge mobility. The methods utilized for this purpose are scanning electron and atomic force microscopies (SEM, AFM), X-ray diffraction (XRD), differential scanning calorimetry (DSC), and to a larger extent dielectric relaxation spectroscopy (DRS). It is found that POSS reduces the degree of crystallinity of the hard segments. Contrary to what was observed in a similar system with POSS pendent along the main chain, soft phase calorimetric glass transition temperature drops as a result of plasticization, and homogenization of the soft phase by the star molecules. The dynamic glass transition though, remains practically unaffected, and a hypothesis is formed to resolve the discrepancy, based on the assumption of different thermal and dielectric responses of slow and fast modes of the system. A relaxation α′, slower than the bulky segmental α and common in polyurethanes, appears here too. A detailed analysis of dielectric spectra provides some evidence that this relaxation has cooperative character. An additional relaxation g, which is not commonly observed, accompanies the Maxwell Wagner Sillars interfacial polarization process, and has dynamics similar to it. POSS is found to introduce conductivity and possibly alter its mechanism. The study points out that different architectures of incorporation of POSS in polyurethane affect its physical properties by different mechanisms.
Collapse
|
17
|
Soudmand BH, Shelesh‐Nezhad K, Salimi Y. A combined differential scanning calorimetry‐dynamic mechanical thermal analysis approach for the estimation of constrained phases in thermoplastic polymer nanocomposites. J Appl Polym Sci 2020. [DOI: 10.1002/app.49260] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Behzad H. Soudmand
- Division of Plastics and Composites Engineering, Department of Mechanical Engineering University of Tabriz Tabriz Iran
| | - Karim Shelesh‐Nezhad
- Division of Plastics and Composites Engineering, Department of Mechanical Engineering University of Tabriz Tabriz Iran
| | - Yaghob Salimi
- Division of Plastics and Composites Engineering, Department of Mechanical Engineering University of Tabriz Tabriz Iran
| |
Collapse
|
18
|
Effect of PMMA/Silica Hybrid Particles on Interfacial Adhesion and Crystallization Properties of Poly(lactic acid)/Block Acrylic Elastomer Composites. Polymers (Basel) 2020; 12:polym12102231. [PMID: 32998345 PMCID: PMC7650821 DOI: 10.3390/polym12102231] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 09/25/2020] [Accepted: 09/25/2020] [Indexed: 01/08/2023] Open
Abstract
Poly(lactic acid) (PLA) is a relatively brittle polymer, and its low melt strength, ductility, and thermal stability limit its use in various industrial applications. This study aimed to investigate the effect of poly(methyl methacrylate) (PMMA) and PMMA/silica hybrid particles on the mechanical properties, interfacial adhesion, and crystallization behavior of PLA/block acrylic elastomer. PLA/block acrylic elastomer blends exhibit improved flexibility; however, phase separation occurs between PLA and block acrylic elastomer domains. Valid time-temperature superposition (TTS) measurements of viscoelastic behavior were obtained and exhibited interfacial adhesion with the addition of PMMA or PMMA/silica in PLA/block acrylic elastomer blends. In particular, the phase separation temperature was increased by the incorporation of PMMA/silica hybrid particles, which suggests a potential role for these particles in improving the phase stability. In addition, PMMA inhibits crystallization, while PMMA/silica acts as a nucleating agent, thus increasing the crystallization rate and crystallinity degree.
Collapse
|
19
|
Superiority of Cellulose Non-Solvent Chemical Modification over Solvent-Involving Treatment: Application in Polymer Composite (part II). MATERIALS 2020; 13:ma13132901. [PMID: 32605233 PMCID: PMC7372397 DOI: 10.3390/ma13132901] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/20/2020] [Accepted: 06/23/2020] [Indexed: 12/19/2022]
Abstract
The following article debates on the properties of cellulose-filled ethylene-norbornene copolymer (EN) composites. Natural fibers employed in this study have been modified via two different approaches: solvent-involving (S) and newly developed non-solvent (NS). The second type of the treatment is fully eco-friendly and was carried out in the planetary mill without incorporation of any additional, waste-generating substances. Composite samples have been investigated with the use of spectroscopic methods (FT-IR), differential scanning calorimetry (DSC), static mechanical analysis, and surface-free energy measurements. It has been proved that the possible filler-polymer matrix interaction changes may occur due to the performed modifications. The highest reinforcement was evidenced for the composite sample filled with cellulose treated via a NS approach—TS = (34 ± 2) MPa, Eb = (380 ± 20)%. Additionally, a surface free energy polar part exhibited a significant increase for the same type of modification. Consequently, this could indicate easier wetting of the material which may contribute to the degradation process enhancement. Successfully developed cellulose-filled ethylene-norbornene copolymer composite compromises the rules of green chemistry and sustainable development by taking an advantage of renewable natural resources. This bio-inspired material may become an eco-friendly alternative for commonly used polymer blends.
Collapse
|
20
|
Klonos PA, Kluge M, Robert T, Kyritsis A, Bikiaris DN. Molecular dynamics, crystallization and hydration study of Poly(Propylene succinate) based Poly(Ester amide)s. POLYMER 2020. [DOI: 10.1016/j.polymer.2019.122056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
21
|
Jin XZ, Yu X, Yang C, Qi XD, Lei YZ, Wang Y. Crystallization and hydrolytic degradation behaviors of poly(l-lactide) induced by carbon nanofibers with different surface modifications. Polym Degrad Stab 2019. [DOI: 10.1016/j.polymdegradstab.2019.109014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
22
|
Klonos PA, Goncharuk OV, Pakhlov EM, Sternik D, Deryło-Marczewska A, Kyritsis A, Gun’ko VM, Pissis P. Morphology, Molecular Dynamics, and Interfacial Phenomena in Systems Based on Silica Modified by Grafting Polydimethylsiloxane Chains and Physically Adsorbed Polydimethylsiloxane. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00155] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Panagiotis A. Klonos
- Department of Physics, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece
| | - Olena V. Goncharuk
- Chuiko Institute of Surface Chemistry, 17 General Naumov Street, 03164 Kiev, Ukraine
| | - Eugeniy M. Pakhlov
- Chuiko Institute of Surface Chemistry, 17 General Naumov Street, 03164 Kiev, Ukraine
| | - Dariusz Sternik
- Maria Curie-Sklodowska University, M. Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland
| | | | - Apostolos Kyritsis
- Department of Physics, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece
| | - Volodymyr M. Gun’ko
- Chuiko Institute of Surface Chemistry, 17 General Naumov Street, 03164 Kiev, Ukraine
| | - Polycarpos Pissis
- Department of Physics, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece
| |
Collapse
|
23
|
Terzopoulou Z, Klonos PA, Kyritsis A, Tziolas A, Avgeropoulos A, Papageorgiou GZ, Bikiaris DN. Interfacial interactions, crystallization and molecular mobility in nanocomposites of Poly(lactic acid) filled with new hybrid inclusions based on graphene oxide and silica nanoparticles. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.01.041] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
24
|
Klonos PA, Tegopoulos SN, Koutsiara CS, Kontou E, Pissis P, Kyritsis A. Effects of CNTs on thermal transitions, thermal diffusivity and electrical conductivity in nanocomposites: comparison between an amorphous and a semicrystalline polymer matrix. SOFT MATTER 2019; 15:1813-1824. [PMID: 30688327 DOI: 10.1039/c8sm02478b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Two series of polymer nanocomposites (PNCs) based on amorphous styrene-butadiene rubber (SBR) and semicrystalline linear low-density polyethylene (PE) matrices were filled with 2-15 wt% carbon nanotubes (CNT) and were studied by employing calorimetry, dielectric spectroscopy and laser flash analysis. The electrical conductivity, σ, increased with CNT loading and similar values were exhibited for the two matrices, uniquely depending on the concentration of the CNTs, suggesting practically no effects of the crystalline fraction (CF) on σ. For both types of matrix, a fraction of the polymer was found to be immobilized (rigid amorphous fraction, RAF). For the amorphous SBR, the RAF in PNCs originates uniquely from the presence of the filler (RAFfiller up to 0.19 wt). On the other hand, for the semicrystalline PE, the RAF is significantly larger (0.4-0.6 wt) due to the severe contribution of the RAF around the crystals (RAFcrystal). The thermal diffusivity, α, is quite low in both types of PNCs and exhibits higher values in the semicrystalline matrix (PE-based PNCs). Our results suggest that in these PNCs, heat transport mechanisms are activated mainly in the crystalline domains, more so with the additive contribution of the RAFcrystal. In the amorphous SBR-based PNCs, heat transport is facilitated mainly by CNTs, whereas the RAFfiller is found to be a good measure of the thermal resistance behavior of CNT/polymer interphases and consequently, of thermal diffusivity. Direct correlation of the results obtained by the three techniques with each other revealed the systematic dependence of α on the amount of RAF in each matrix; the α(RAF) trends, however, are different for the two matrices. Furthermore, the results suggest that the two RAFs exhibit different structural characteristics, e.g. the RAFcrystal exhibits a more ordered structure than the RAFfiller; this issue is still an open debate in the literature.
Collapse
Affiliation(s)
- Panagiotis A Klonos
- Department of Physics, National Technical University of Athens, Zografou Campus, 15780, Athens, Greece.
| | | | | | | | | | | |
Collapse
|
25
|
Androulaki K, Chrissopoulou K, Prevosto D, Labardi M, Anastasiadis SH. Structure and Dynamics of Biobased Polyester Nanocomposites. Biomacromolecules 2019; 20:164-176. [PMID: 30485746 DOI: 10.1021/acs.biomac.8b01231] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The structure and the dynamics of two bio-based polyester polyols are investigated in the bulk and close to surfaces in polymer/layered silicate nanocomposites. The morphology of the neat polymers as well as the structure of the nanohybrids are investigated with X-ray diffraction and their thermal properties are studied by differential scanning calorimetry. One of the investigated polyesters is amorphous, whereas the second one is a semicrystalline polymer with intriguing thermal behavior. Hybrids have been synthesized over a broad range of compositions and intercalated structures are always obtained. The thermal transitions in the nanocomposites are observed only when the polymers are in excess outside the completely filled galleries. The glass transition, whenever it can be resolved, appears insensitive to the presence of the inorganic material, whereas the way the crystallization takes place depends on the composition of the nanohybrid. Dielectric relaxation spectroscopy was utilized to study the polymer dynamics. It revealed multiple relaxation processes for the neat polymers both below and above their glass transition temperatures, whereas in the nanocomposites, similarities and differences are observed depending on the specific mode of the dynamic process.
Collapse
Affiliation(s)
- Krystalenia Androulaki
- Institute of Electronic Structure and Laser , Foundation for Research and Technology - Hellas , P.O. Box 1527, 711 10 Heraklion Crete , Greece.,Department of Chemistry , University of Crete , P.O. Box 2208, 710 03 Heraklion Crete , Greece
| | - Kiriaki Chrissopoulou
- Institute of Electronic Structure and Laser , Foundation for Research and Technology - Hellas , P.O. Box 1527, 711 10 Heraklion Crete , Greece
| | - Daniele Prevosto
- CNR-IPCF, Department of Physics , University of Pisa , 56126 Pisa , Italy
| | | | - Spiros H Anastasiadis
- Institute of Electronic Structure and Laser , Foundation for Research and Technology - Hellas , P.O. Box 1527, 711 10 Heraklion Crete , Greece.,Department of Chemistry , University of Crete , P.O. Box 2208, 710 03 Heraklion Crete , Greece
| |
Collapse
|
26
|
Klonos PA. Crystallization, glass transition, and molecular dynamics in PDMS of low molecular weights: A calorimetric and dielectric study. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.11.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
27
|
Vyazovkin S. "Nothing Can Hide Itself from Thy Heat": Understanding Polymers via Unconventional Applications of Thermal Analysis. Macromol Rapid Commun 2018; 40:e1800334. [PMID: 30033550 DOI: 10.1002/marc.201800334] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/26/2018] [Indexed: 11/06/2022]
Abstract
This article surveys some exciting possibilities and results offered by less common, yet essential applications of differential scanning calorimetry and thermogravimetric analysis (TGA). The applications are concerned with the most commonly studied processes of the glass transition, crystallization, melting, polymerization, and degradation. Issues related to the glass transition include the non-Arrhenius temperature dependence and fragility, kinetic complexity of physical aging, evaluation of cooperatively rearranging regions, and rigid amorphous fraction. Discussion of crystallization covers separation of heterogeneous and homogeneous nucleation, crystallization controlled by physical aging, and the use of isoconversional methods for determining the Hoffman-Lauritzen parameters. For melting, the role of reorganization and nucleation control is emphasized. For the thermal degradation and polymerization, advanced kinetic treatments as a way of obtaining mechanistic insights are discussed, and the possibility of studying both processes during continuous cooling is stressed. The possibility of using TGA for monitoring polycondensation is also highlighted.
Collapse
Affiliation(s)
- Sergey Vyazovkin
- Department of Chemistry, University of Alabama at Birmingham, 901 S. 14th Street, Birmingham, AL, 35294, USA
| |
Collapse
|
28
|
|
29
|
Klonos P, Bolbukh Y, Koutsiara C, Zafeiris K, Kalogeri O, Sternik D, Deryło–Marczewska A, Tertykh V, Pissis P. Morphology and molecular dynamics investigation of low molecular weight PDMS adsorbed onto Stöber, fumed, and sol-gel silica nanoparticles. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.06.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
30
|
Klonos P, Sulym IY, Sternik D, Konstantinou P, Goncharuk OV, Deryło–Marczewska A, Gun'ko VM, Kyritsis A, Pissis P. Morphology, crystallization and rigid amorphous fraction in PDMS adsorbed onto carbon nanotubes and graphite. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.02.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
31
|
Zheng Y, Chen Y. Preparation of polypropylene/Mg-Al layered double hydroxides nanocomposites through wet pan-milling: non-isothermal crystallization behaviour. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171070. [PMID: 29410819 PMCID: PMC5792896 DOI: 10.1098/rsos.171070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/24/2017] [Indexed: 06/08/2023]
Abstract
Differential scanning calorimeter was used to extensively investigate the non-isothermal crystallization of polypropylene (PP)/layered double hydroxides (LDHs) nanocomposites prepared through wet solid-state shear milling. The corresponding crystallization kinetics was further investigated by using Ozawa, modified Avrami and combined Avrami-Ozawa method, respectively. The results showed that the Ozawa method could not well describe the crystallization kinetics of pure PP and its nanocomposites. Comparatively, the modified Avrami method as well as the combined Avrami-Ozawa method gives the satisfactory results. Under the effect of pan-milling, the produced LDH nano intercalated/exfoliated particles exhibit the inhibitive effect on the PP nucleation but more remarkable promotion effect on the spherulite growth, leading to enhancement in the overall crystallization rate. This is reflected in increase of the calculated fold surface free energy σe and also the supercooling degree ΔT required for crystallization nucleation. In addition, the polarized optical microscopy observation also verifies the higher spherulite growth rate of PP/LDHs nanocomposites than that of pure PP.
Collapse
|
32
|
Yau MY, Gunkel I, Hartmann-Azanza B, Akram W, Wang Y, Thurn-Albrecht T, Steinhart M. Semicrystalline Block Copolymers in Rigid Confining Nanopores. Macromolecules 2017; 50:8637-8646. [PMID: 30174341 PMCID: PMC6114844 DOI: 10.1021/acs.macromol.7b01567] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/18/2017] [Indexed: 02/04/2023]
Abstract
We have investigated PLLA crystallization in lamellae-forming PS-b-PLLA confined to straight cylindrical nanopores under weak confinement (nanopore diameter D/equilibrium PS-b-PLLA period L0 ≥ 4.8). Molten PS-b-PLLA predominantly forms concentric lamellae along the nanopores, but intertwined helices occur even for D/L0 ≈ 7.3. Quenching PS-b-PLLA melts below TG(PS) results in PLLA cold crystallization strictly confined by the vitrified PS domains. Above TG(PS), PLLA crystallization is templated by the PS-b-PLLA melt domain structure in the nanopore centers, while adsorption on the nanopore walls stabilizes the outermost cylindrical PS-b-PLLA shell. In between, the nanoscopic PS-b-PLLA melt domain structure apparently ripens to reduce frustrations transmitted from the outermost immobilized PS-b-PLLA layer. The onset of PLLA crystallization catalyzes the ripening while transient ripening states are arrested by advancing PLLA crystallization. Certain helical structure motifs persist PLLA crystallization even if PS is soft. The direction of fastest PLLA crystal growth is preferentially aligned with the nanopore axes to the same degree as for PLLA homopolymer, independent of whether PS is vitreous or soft.
Collapse
Affiliation(s)
- Man Yan
Eric Yau
- Institut
für Chemie neuer Materialien, Universität
Osnabrück, Barbarastr.7, 49076 Osnabrück, Germany
| | - Ilja Gunkel
- Institut
für Physik, Martin-Luther-Universität
Halle-Wittenberg, D-06099 Halle, Germany
| | - Brigitte Hartmann-Azanza
- Institut
für Chemie neuer Materialien, Universität
Osnabrück, Barbarastr.7, 49076 Osnabrück, Germany
| | - Wajiha Akram
- Institut
für Chemie neuer Materialien, Universität
Osnabrück, Barbarastr.7, 49076 Osnabrück, Germany
| | - Yong Wang
- State
Key Lab of Materials-Oriented Chemical Engineering; College of Chemical
Engineering, Nanjing Tech University, Xin Mofan Road 5, Nanjing 210009, Jiangsu, China
| | - Thomas Thurn-Albrecht
- Institut
für Physik, Martin-Luther-Universität
Halle-Wittenberg, D-06099 Halle, Germany
| | - Martin Steinhart
- Institut
für Chemie neuer Materialien, Universität
Osnabrück, Barbarastr.7, 49076 Osnabrück, Germany
| |
Collapse
|