1
|
Cui J, Tao Z, Wu J, Ma S, Yang Y, Zhang J. A Stable Triazole-Based Covalent Gel for Long-Term Cycling Zn Anode in Zinc-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2304640. [PMID: 37632314 DOI: 10.1002/smll.202304640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/03/2023] [Indexed: 08/27/2023]
Abstract
In this work, a functional covalent gel material is developed to resolve the severe dendritic growth and hydrogen evolution reaction toward Zn/electrolyte interface in aqueous zinc-ion batteries (ZIBs). A covalent gel layer with superior durability forms homogeneously on the surface of Zn foil. The covalent gel with triazole functional groups can uniformize the transport of Zn2+ due to the interactions between Zn2+ ions and the triazole groups in the covalent gel. As a consequence, the symmetrical battery with triazole covalent gel maintains stable Zn plating/stripping for over 3000 h at 1 mA cm-2 and 1 mAh cm-2 , and the full cell combined with a V2 O5 cathode operates steadily and continuously for at least 1800 cycles at 5 A g-1 with a capacity retention rate of 67.0%. This work provides a train of thought to develop stable covalent gels for the protection of zinc anode toward high-performance ZIBs.
Collapse
Affiliation(s)
- Jiawei Cui
- MOE Laboratory of Polymeric Composite and Functional Materials, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Zengren Tao
- MOE Laboratory of Polymeric Composite and Functional Materials, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Jinyi Wu
- MOE Laboratory of Polymeric Composite and Functional Materials, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Shasha Ma
- MOE Laboratory of Polymeric Composite and Functional Materials, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Yangyi Yang
- MOE Laboratory of Polymeric Composite and Functional Materials, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Jianyong Zhang
- MOE Laboratory of Polymeric Composite and Functional Materials, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
2
|
Li X, Ning F, Luo L, Wu J, Xiang Y, Wu X, Xiong L, Peng X. Initiating a high-temperature zinc ion battery through a triazolium-based ionic liquid. RSC Adv 2022; 12:8394-8403. [PMID: 35424792 PMCID: PMC8984945 DOI: 10.1039/d2ra00298a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/02/2022] [Indexed: 01/03/2023] Open
Abstract
Triazolium-based ionic liquids (T1, T2 and T3) with or without terminal hydroxyl groups were prepared via Cu(i) catalysed azide-alkyne click chemistry and their properties were investigated using various technologies. The hydroxyl groups obviously affected their physicochemical properties, where with a decrease in the number of hydroxyl groups, their stability and conductivity were enhanced. T1, T2 and T3 showed relatively high thermal stability, and their electrochemical stability windows (ESWs) were 4.76, 4.11 and 3.52 V, respectively. T1S-20 was obtained via the addition of zinc trifluoromethanesulfonic acid (Zn(CF3SO3)2) and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) to T1, displaying conductivity and ESW values of 1.55 × 10-3 S cm-1 and 6.36 V at 30 °C, respectively. Subsequently, a Zn/Li3V2(PO4)3 battery was assembled using T1S-20 as the electrolyte and its performances at 30 °C and 80 °C were investigated. The battery showed a capacity of 81 mA h g-1 at 30 °C, and its capacity retention rate was 89% after 50 cycles. After increasing the temperature to 80 °C, its initial capacity increased to 111 mA h g-1 with a capacity retention rate of 93.6% after 100 cycles, which was much higher than that of the aqueous electrolyte (WS-20)-based zinc ion battery (71.8%). Simultaneously, the T1S-20 electrolyte-based battery exhibited a good charge/discharge efficiency, and its Coulomb efficiency was 99%. Consequently, the T1S-20 electrolyte displayed a better performance in the Zn/Li3V2(PO4)3 battery than that with the aqueous electrolyte, especially at high temperature.
Collapse
Affiliation(s)
- Xun Li
- College of Physics and Electromechanical Engineering, Jishou University Jishou 416000 China
| | - Fawen Ning
- College of Chemistry and Chemical Engineering, Jishou University Jishou 416000 China
| | - Lin Luo
- College of Chemistry and Chemical Engineering, Jishou University Jishou 416000 China
| | - Jianhua Wu
- College of Physics and Electromechanical Engineering, Jishou University Jishou 416000 China
| | - Yanhong Xiang
- College of Physics and Electromechanical Engineering, Jishou University Jishou 416000 China
| | - Xianwen Wu
- College of Chemistry and Chemical Engineering, Jishou University Jishou 416000 China
| | - Lizhi Xiong
- College of Pharmacy, Jishou University Jishou 416000 China
| | - Xiaochun Peng
- College of Chemistry and Chemical Engineering, Jishou University Jishou 416000 China
| |
Collapse
|
3
|
Liu Y, Cong Y, Ma W, Kang G, Meng C, Liu F, Yu C, Wei H. Triple Functional AB 2 Unit-Modulated Facile Preparation of Bioreducible Hyperbranched Copolymers. ACS Biomater Sci Eng 2020; 6:2812-2821. [PMID: 33463294 DOI: 10.1021/acsbiomaterials.0c00261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Facile preparation of hyperbranched polymers (HPs) has been advanced tremendously by the use of either various multifunctional agent-mediated controlled living radical polymerizations or a highly reactive ABx unit-modulated self-stepwise polymerizations. However, it remains, to our knowledge, a significant challenge to prepare HPs with simultaneously precisely controlled degree of branching (DB) and biorelevant signal-triggered degradation property for controlled release applications due to the respective limitations of the aforementioned two strategies. For this purpose, a triple functional AB2 unit, A-SS-B2 chain transfer agent (AB2 CTA), that integrates the merits of both multifunctional agents and highly reactive ABx units was designed and synthesized successfully to include a disulfide bond for reduction-triggered polymer degradation toward promoted intracellular release of encapsulated cargoes, a trithiocarbonate group for a universal reversible addition-fragmentation chain transfer (RAFT) polymerization of any vinyl-based monomer, and three terminal groups consisting of one azide and two alkyne functions for the generation of hyperbranched topology via a self-click coupling-based polymerization. A subsequent self-click polymerization of the resulting AB2 CTA by click coupling in the presence of CuSO4·5H2O and sodium ascorbate (NaVc) generated a hyperbranched polymer template (HPT) with precisely modulated DB and a plurality of CTA units for a universal reversible addition-fragmentation chain transfer (RAFT) polymerization of any vinyl-containing monomer. The HPT was next used as a multimacro-CTA for RAFT polymerization of a typical hydrophilic monomer, oligo(ethylene glycol) monomethyl ether methacrylate (OEGMA), to demonstrate the potential of this HPT for a robust and facile production of bioreducible hyperbranched polymers for controlled release applications. The synthesized HPT-4-POEGMA can form unimolecular micelles with enhanced stability due to the hyperbranched structure, and the size of micelles varied in the range from 82.4 to 140.3 nm by a modulation of the molar feed ratio of monomer to HPT and polymerization time. More importantly, HPT-POEGMA micelles incubated with 10 mM glutathione (GSH) showed reduction-triggered cleavage of the disulfide links and polymer degradation for promoted intracellular doxorubicin (DOX) release and enhanced therapeutic efficiency. Taken together, this triple functional AB2 CTA provided a powerful means for the facile preparation of bioreducible hyperbranched polymers with precisely controlled DB for controlled release applications.
Collapse
Affiliation(s)
- Yuping Liu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Yong Cong
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Wei Ma
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Guiying Kang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Chao Meng
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Fangjun Liu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Cuiyun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China
| | - Hua Wei
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, Gansu, China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China
| |
Collapse
|
4
|
Li H, Zhang H, Liao X, Sun R, Xie M. Incorporating trifunctional 1,6-heptadiyne moiety into polyacetylene ionomer for improving its physical and conductive properties. Polym Chem 2020. [DOI: 10.1039/d0py00109k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A trifunctional diyne comonomer can regulate the structure and optimize the physical state of polyacetylene ionomers, which exhibit a high ionic conductivity of 2.6 × 10−5–1.0 × 10−3 S cm−1 at 30 °C.
Collapse
Affiliation(s)
- Hongfei Li
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
- China
- Department of Polymer Science and Engineering
| | - Hengchen Zhang
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
- China
| | - Xiaojuan Liao
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
- China
| | - Ruyi Sun
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
- China
| | - Meiran Xie
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
- China
| |
Collapse
|
5
|
Novel Chemical Cross-Linked Ionogel Based on Acrylate Terminated Hyperbranched Polymer with Superior Ionic Conductivity for High Performance Lithium-Ion Batteries. Polymers (Basel) 2019; 11:polym11030444. [PMID: 30960428 PMCID: PMC6473542 DOI: 10.3390/polym11030444] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/26/2019] [Accepted: 03/03/2019] [Indexed: 01/20/2023] Open
Abstract
A new family of chemical cross-linked ionogel is successfully synthesized by photopolymerization of hyperbranched aliphatic polyester with acrylate terminal groups in an ionic liquid of 1-butyl-3-methylimidazolium tetrafluoroborate (BMIMBF₄). The microstructure, viscoelastic behavior, mechanical property thermal stability, and ionic conductivities of the ionogels are investigated systematically. The ionogels exhibit high mechanical strength (up to 1.6 MPa) and high mechanical stability even at temperatures up to 200 °C. It is found to be thermally stable up to 371.3 °C and electrochemically stable above 4.3 V. The obtained ionogels show superior ionic conductivity over a wide temperature range (from 1.2 × 10-3 S cm-1 at 20 °C up to 5.0 × 10-2 S cm-1 at 120 °C). Moreover, the Li/LiFePO₄ batteries based on ionogel electrolyte with LiBF₄ show a higher specific capacity of 153.1 mAhg-1 and retain 98.1% after 100 cycles, exhibiting very stable charge/discharge behavior with good cycle performance. This work provides a new method for fabrication of novel advanced gel polymer electrolytes for applications in lithium-ion batteries.
Collapse
|
6
|
Li H, Ren Q, Chen J, Zhang H, Wu J, Xie M. Triazolinedione-based Alder-ene modification of eucommia ulmoide gum to flexible polyelectrolyte and ion gel. REACT FUNCT POLYM 2018. [DOI: 10.1016/j.reactfunctpolym.2018.09.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|