1
|
Feuerstein A, Boßmann B, Rittner T, Leiner R, Janka O, Gallei M, Schäfer A. Polycobaltoceniumylmethylene - A Water-Soluble Polyelectrolyte Prepared by Ring-Opening Transmetalation Polymerization. ACS Macro Lett 2023; 12:1019-1024. [PMID: 37428818 DOI: 10.1021/acsmacrolett.3c00336] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
The synthesis of a water-soluble polycobaltoceniumylmethylene chloride (PCM-Cl) via ring-opening transmetalation polymerization is presented. Starting from a carba[1]magnesocenophane and cobalt(II) chloride, this route gives access to a polymer with methylene-bridged cobaltocenium moieties within the polymers' main-chain. The polymer was characterized by NMR spectroscopy, elemental analysis, TGA, DSC, XRD, and CV measurements, as well as UV-vis spectroscopy. Furthermore, GPC measurements in an aqueous eluent versus pullulan standards were conducted to gain insight into the obtained molar masses and distributions. In addition, the ion-dependent solubility was demonstrated by anion exchange, tuning the hydrophobic/hydrophilic properties of this redox-responsive material.
Collapse
Affiliation(s)
- Aylin Feuerstein
- Inorganic Chemistry, Department of Chemistry, Faculty of Natural Sciences and Technology, Saarland University, Campus Saarbrücken, 66123 Saarbrücken, Germany
| | - Blandine Boßmann
- Polymer Chemistry, Department of Chemistry, Faculty of Natural Sciences and Technology, Saarland University, Campus Saarbrücken, 66123 Saarbrücken, Germany
| | - Till Rittner
- Polymer Chemistry, Department of Chemistry, Faculty of Natural Sciences and Technology, Saarland University, Campus Saarbrücken, 66123 Saarbrücken, Germany
| | - Regina Leiner
- Polymer Chemistry, Department of Chemistry, Faculty of Natural Sciences and Technology, Saarland University, Campus Saarbrücken, 66123 Saarbrücken, Germany
| | - Oliver Janka
- Inorganic Chemistry, Department of Chemistry, Faculty of Natural Sciences and Technology, Saarland University, Campus Saarbrücken, 66123 Saarbrücken, Germany
| | - Markus Gallei
- Polymer Chemistry, Department of Chemistry, Faculty of Natural Sciences and Technology, Saarland University, Campus Saarbrücken, 66123 Saarbrücken, Germany
- Saarene, Saarland Center for Energy Materials and Sustainability, Campus Saarbrücken, 66123 Saarbrücken, Germany
| | - André Schäfer
- Inorganic Chemistry, Department of Chemistry, Faculty of Natural Sciences and Technology, Saarland University, Campus Saarbrücken, 66123 Saarbrücken, Germany
| |
Collapse
|
2
|
Szuwarzyński M, Wolski K, Kruk T, Zapotoczny S. Macromolecular strategies for transporting electrons and excitation energy in ordered polymer layers. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101433] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
3
|
POSS-Containing Polymethacrylates on Cellulose-Based Substrates: Immobilization and Ceramic Formation. COATINGS 2018. [DOI: 10.3390/coatings8120446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The combination of cellulose-based materials and functional polymers is a promising approach for the preparation of porous, biotemplated ceramic materials. Within this study, cellulose substrates were functionalized with a surface-attached initiator followed by polymerization of (3methacryloxypropyl)heptaisobutyl-T8-silsesquioxane (MAPOSS) by means of surface-initiated atom transfer radical polymerization (ATRP). Successful functionalization was proven by infrared (IR) spectroscopy as well as by contact angle (CA) measurements. Thermal analysis of the polymer-modified cellulose substrates in different atmospheres (nitrogen and air) up to 600 °C led to porous carbon materials featuring the pristine fibre-like structure of the cellulose material as shown by scanning electron microscopy (SEM). Interestingly, spherical, silicon-containing domains were present at the surface of the cellulose-templated carbon fibres after further ceramisation at 1600 °C, as investigated by energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD) measurements.
Collapse
|
4
|
A story of “Axellence” – Introduction to the Special Issue of Polymer on “Advanced Polymer Synthesis for Functional Nanostructures” dedicated to professor Axel H.E. Müller on the occasion of his 70th birthday. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.06.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|