1
|
Guo M, Zhao Z, Xie Z, Wu W, Wu W, Gao Q. Role of the Branched PEG- b-PLLA Block Chain in Stereocomplex Crystallization and Crystallization Kinetics for PDLA/MPEG- b-PLLA- g-glucose Blends with Different Architectures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:15866-15879. [PMID: 36469019 DOI: 10.1021/acs.langmuir.2c02867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The isothermal crystallization behavior and corresponding morphology evolution of poly(d-lactic acid) (PDLA) blends with PLLA6.7k or MPEG-b-PLLA6.7k-g-glucose with different architectures and different PLLA-grafted copolymer contents were investigated. The formation of stereocomplexes (SCs) in between the chain branched structure of MPEG-b-PLLA6.7k-g-glucose and PDLA chains acting as the physical crosslinking points slows down the motion of PDLA chains, but the SCs could act as a heterogeneous nucleating agent for the late formation of homocrystals (HCs) in the blend system, accelerating the crystallization kinetics of HCs through enhancing the nucleation density. For PDLA/MPEG-b-PLLA6.7k-g-glucose blends, the mobility of SCs in the blend system and the nucleation density of SCs in the blends exhibit oppositional behavior during the isothermal crystallization at a Tc of 130 °C. The evolution of the crystal growth and structure during the isothermal crystallization process by rheometry has revealed the interesting role of the branched chains of MPEG-b-PLLA6.7k-g-glucose in the mechanism of the crystallization in PDLA blends.
Collapse
Affiliation(s)
- Mingwei Guo
- College of Chemical Engineering, Nanjing Forestry University, Nanjing210037, China
| | - Zhifeng Zhao
- College of Chemical Engineering, Hebei University of Technology, Tianjin300130, China
| | - Zhongyuan Xie
- College of Chemical Engineering, Nanjing Forestry University, Nanjing210037, China
| | - Weixin Wu
- College of Chemical Engineering, Nanjing Forestry University, Nanjing210037, China
| | - Wenjing Wu
- College of Chemical Engineering, Nanjing Forestry University, Nanjing210037, China
| | - Qinwei Gao
- College of Chemical Engineering, Nanjing Forestry University, Nanjing210037, China
- Jiangsu Key Lab for the Chemistry and Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing210037, China
| |
Collapse
|
2
|
Guo M, Wu W, Wu W, Gao Q. Competitive Mechanism of Stereocomplexes and Homocrystals in High-Performance Symmetric and Asymmetric Poly(lactic acid) Enantiomers: Qualitative Methods. ACS OMEGA 2022; 7:41412-41425. [PMID: 36406546 PMCID: PMC9670727 DOI: 10.1021/acsomega.2c05198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
To systematically explore the critical contributions of both molecular weights and crystallization temperature and chain length and molar ratios to the formation of stereocomplexes (SCs), our group quantitatively prepared a wide MW range of symmetric and asymmetric poly(lactic acid) (PLA) racemic blends, which contains L-MW PLLA with M n > 6k g/mol. The crystallinity and relative fraction of SCs increase with T c, and the SCs are exclusively formed at T c > 180 °C in M/H-MW racemic blends. When MWs of one of the enantiomers are over 6k and less than 41k, multiple stereocomplexation is clear in the asymmetric racemic blends and more ordered SCs form with less entanglement or the amorphous region compared to those for the MW of the enantiomers over 41k in the symmetric/asymmetric enantiomers. When the MW of the blends is more than 41k, SCs and homocrystals (HCs) coexist in the symmetric enantiomers and the multicomplexation can restrict the asymmetric enantiomers. This study provides a deep comprehensive insight into the stereocomplex crystallization mechanism of polymers and provides a reference value for future research attempting to prepare stereocomplex materials.
Collapse
Affiliation(s)
- Mingwei Guo
- College
of Chemical Engineering, Nanjing Forestry
University, Nanjing210037, China
| | - Wenjing Wu
- College
of Chemical Engineering, Nanjing Forestry
University, Nanjing210037, China
| | - Weixin Wu
- College
of Chemical Engineering, Nanjing Forestry
University, Nanjing210037, China
| | - Qinwei Gao
- College
of Chemical Engineering, Nanjing Forestry
University, Nanjing210037, China
- Co-Innovation
Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing210037, China
| |
Collapse
|
3
|
Nishiwaki Y, Masutani K, Kimura Y, Lee C. Synthesis and mechanochemical properties of biobased
ABCBA
‐type pentablock copolymers comprising poly‐
d
‐lactide (A), poly‐
l
‐lactide (B) and poly(1,2‐propylene succinate) (C). JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20210883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yasumasa Nishiwaki
- Department of Biobased Materials Science Kyoto Institute of Technology Kyoto Japan
| | - Kazunari Masutani
- Center for Fiber and Textile Science Kyoto Institute of Technology Kyoto Japan
| | - Yoshiharu Kimura
- Center for Fiber and Textile Science Kyoto Institute of Technology Kyoto Japan
| | - Chan‐Woo Lee
- Department of Innovative Industrial Technology Hoseo University Asan South Korea
| |
Collapse
|
4
|
Substantially Enhanced Stereocomplex Crystallization of Poly(L-Lactide)/Poly(D-Lactide) Blends by the Formation of Multi-Arm Stereo-Block Copolymers. CRYSTALS 2022. [DOI: 10.3390/cryst12020210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Stereocomplex-type polylactide (SC-PLA) created by alternate packing of poly(L-lactide) (PLLA) and poly(D-lactide) (PDLA) chains in a crystalline state has emerged as a growingly popular engineering bioplastic that possesses excellent hydrolytic stability and thermomechanical properties. However, it is extremely difficult to acquire high-performance SC-PLA products via melt-processing of high-molecular-weight PLLA/PDLA blends because both SC crystallites and homocrystallites (HCs) are competitively formed in the melt-crystallization. Herein, a facile yet powerful way was employed to boost SC formation by introducing trace amounts of some epoxy-functionalized small-molecule modifiers into the enantiomeric blends during reactive melt-blending. The results show that the SC formation is considerably enhanced with the in situ generation of multi-arm stereo-block PLA copolymers, based on the reaction between epoxy groups of the modifiers and hydroxyl end groups of PLAs. More impressively, it is intriguing to find that the introduction of only 0.5 wt% modifiers can induce exclusive SC formation in the blends upon isothermal and non-isothermal melt-crystallizations. The outstanding SC crystallizability might be attributed to the suppressing effect of such unique copolymers on the separation of the alternately arranged PLLA/PDLA chain segments in molten state as a compatibilizer. Furthermore, the generation of these copolymers does not result in a significant increase in melt viscosity of the blends. These findings suggest new opportunities for the high-throughput processing of SC-PLA materials into useful products.
Collapse
|
5
|
Choi J, Ajiro H. Preparation and analyses of stereocomplexes of a polylactide homopolymer and copolymer with poly(ethylene glycol) and urethane capping. Polym J 2021. [DOI: 10.1038/s41428-021-00564-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
6
|
Zhou D, Xu M, Li J, Tan R, Ma Z, Dong XH. Effect of Chain Length on Polymer Stereocomplexation: A Quantitative Study. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00380] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Dongdong Zhou
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Miao Xu
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jinbin Li
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Rui Tan
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Zhuang Ma
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xue-Hui Dong
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
7
|
Quantitatively unravel the effect of chain length heterogeneity on polymer crystallization using discrete oligo l-lactide. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Nishiwaki Y, Masutani K, Kimura Y, Lee C. Controlling the thermomechanical properties of biobased ABA triblock copolymers comprising polylactide (A) and poly(1,2‐propylene succinate) (B) with high molecular weight. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20190192] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yasumasa Nishiwaki
- Department of Biobased Materials ScienceKyoto Institute of Technology Kyoto Japan
| | - Kazunari Masutani
- Center for Fiber and Textile ScienceKyoto Institute of Technology Kyoto Japan
| | - Yoshiharu Kimura
- Center for Fiber and Textile ScienceKyoto Institute of Technology Kyoto Japan
| | - Chan‐Woo Lee
- Department of Innovative Industrial TechnologyHoseo University Asan Chungnam South Korea
| |
Collapse
|
9
|
Wei S, Huang Y, Fang J, Cai Q, Yang X. Strengthening the Shape Memory Behaviors of l-Lactide-ased Copolymers via Its Stereocomplexation Effect with Poly(d-Lactide). Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b04605] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
10
|
Wang L, Feng C, Shao J, Li G, Hou H. The crystallization behavior of poly(ethylene glycol) and poly(
l
‐lactide) block copolymer: Effects of block length of poly(ethylene glycol) and poly(
l
‐lactide). POLYMER CRYSTALLIZATION 2019. [DOI: 10.1002/pcr2.10071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Liying Wang
- College of Chemistry and Chemical EngineeringJiangXi Normal University Nanchang China
| | - Congshu Feng
- College of Chemistry and Chemical EngineeringJiangXi Normal University Nanchang China
| | - Jun Shao
- College of Chemistry and Chemical EngineeringJiangXi Normal University Nanchang China
| | - Gao Li
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun China
| | - Haoqing Hou
- College of Chemistry and Chemical EngineeringJiangXi Normal University Nanchang China
| |
Collapse
|
11
|
Van Horn RM, Steffen MR, O'Connor D. Recent progress in block copolymer crystallization. POLYMER CRYSTALLIZATION 2018. [DOI: 10.1002/pcr2.10039] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ryan M. Van Horn
- Department of Chemistry Allegheny College Meadville Pennsylvania
| | | | - Dana O'Connor
- Department of Chemistry Allegheny College Meadville Pennsylvania
| |
Collapse
|