1
|
Jin Y, Wu Q, Yang K, Xu Q, Bian Y, Qi MH, Zhu B, Ren GB, Hong M. A novel anion replaced gemini surfactant: Investigation on the primary interaction between gemini surfactant and BSA. Colloids Surf B Biointerfaces 2025; 247:114434. [PMID: 39644745 DOI: 10.1016/j.colsurfb.2024.114434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/14/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
Gemini surfactants (GS) could serve as the drug carrier agents for the delivery of macromolecules due to the excellent properties and tuneable structures. Little attention has been paid to the impact of counterion change on GS and the interaction between GS and protein. In this work, ibuprofen (Ibu) replaced quaternary ammonium ion GS (GS-Ibu) with the hydrophobic chain length of 8, 10, 12, 14 and 16 carbon atoms were prepared for the first-time using extraction technology. The prepared GS-Ibu has stronger electrostatic interaction compared to traditional gemini surfactants with bromide anions (GS-Br). GS were further incubated with the model macromolecule, bovine serum albumin (BSA), to form BSA/GS complexes. The colloid stability of BSA could be affected by the concentration of GS, the length of hydrophobic chain and the type of anion. GS-Ibu exhibited better ability to prevent BSA from aggregating based the result of PAGE test. The molecular level change of BSA after the introduction of GS was first reflected by UV-Visible absorption spectrum. CD spectrum results further revealed that the primary interaction leading to the change in the secondary structure of BSA is electrostatic interaction. Molecular docking and molecular dynamic simulations confirmed the presence of hydrophobic and electrostatic interaction between BSA and GS. In conclusion, the anion replaced GS could be a promising strategy to stabilize the proteins.
Collapse
Affiliation(s)
- Yuhao Jin
- Laboratory of Pharmaceutical Crystal Engineering & Technology, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, No. 130 Meilong Road, Shanghai 200237, China
| | - Qi Wu
- Laboratory of Pharmaceutical Crystal Engineering & Technology, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, No. 130 Meilong Road, Shanghai 200237, China
| | - Ke Yang
- Laboratory of Pharmaceutical Crystal Engineering & Technology, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, No. 130 Meilong Road, Shanghai 200237, China
| | - Qianlin Xu
- Laboratory of Pharmaceutical Crystal Engineering & Technology, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, No. 130 Meilong Road, Shanghai 200237, China
| | - Yizhen Bian
- Laboratory of Pharmaceutical Crystal Engineering & Technology, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, No. 130 Meilong Road, Shanghai 200237, China
| | - Ming-Hui Qi
- Laboratory of Pharmaceutical Crystal Engineering & Technology, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, No. 130 Meilong Road, Shanghai 200237, China
| | - Bin Zhu
- Laboratory of Pharmaceutical Crystal Engineering & Technology, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, No. 130 Meilong Road, Shanghai 200237, China
| | - Guo-Bin Ren
- Laboratory of Pharmaceutical Crystal Engineering & Technology, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, No. 130 Meilong Road, Shanghai 200237, China
| | - Minghuang Hong
- Laboratory of Pharmaceutical Crystal Engineering & Technology, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, No. 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|
2
|
Nakahara H, Koga K, Matsuoka K. Distinct Solubilization Mechanisms of Medroxyprogesterone in Gemini Surfactant Micelles: A Comparative Study with Progesterone. Molecules 2024; 29:4945. [PMID: 39459313 PMCID: PMC11510562 DOI: 10.3390/molecules29204945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/15/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
The solubilization behavior of medroxyprogesterone (MP) within gemini surfactant micelles (14-6-14,2Br-) was investigated and compared with that of progesterone to uncover distinct solubilization mechanisms. We employed 1H-NMR and 2D ROESY spectroscopy to elucidate the spatial positioning of MP within the micelle, revealing that MP integrates more deeply into the micellar core. This behavior is linked to the unique structural features of MP, particularly its 17β-acetyl group, which promotes enhanced interactions with the hydrophobic regions of the micelle, while the 6α-methyl group interacts with the hydrophilic regions of the micelle. The 2D ROESY correlations specifically highlighted interactions between the hydrophobic chains of the surfactant and two protons of MP, H22 and H19. Complementary machine learning and electron density analyses supported these spectroscopic findings, underscoring the pivotal role of the molecular characteristics of MP in its solubilization behavior. These insights into the solubilization dynamics of MP not only advance our understanding of hydrophobic compound incorporation in gemini surfactant micelles but also indicate the potential of 14-6-14,2Br- micelles for diverse drug delivery applications.
Collapse
Affiliation(s)
- Hiromichi Nakahara
- Department of Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Daiichi University of Pharmacy, 22-1 Tamagawa-cho, Minami-ku, Fukuoka 815-8511, Japan
| | - Kazutaka Koga
- Department of Kampo Pharmacy, Faculty of Pharmaceutical Sciences, Daiichi University of Pharmacy, 22-1 Tamagawa-cho, Minami-ku, Fukuoka 815-8511, Japan;
| | - Keisuke Matsuoka
- Laboratory of Chemistry, Faculty of Education, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan;
| |
Collapse
|
3
|
Katari O, Kumar K, Bhamble S, Jain S. Gemini surfactants as next-generation drug carriers in cancer management. Expert Opin Drug Deliv 2024; 21:1029-1051. [PMID: 39039919 DOI: 10.1080/17425247.2024.2384037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 07/21/2024] [Indexed: 07/24/2024]
Abstract
INTRODUCTION Gemini surfactants (GS) are an elite class of amphiphilic molecules that have shown up as a potential candidate in the field of drug delivery because of their exceptional physicochemical properties. They comprise two hydrophilic headgroups connected by an adaptable spacer and hydrophobic tails that has shown promising results in delivering different therapeutic agents to cancer cells at preclinical level. However further studies are in demand to unlock the full potential of GS in this field. AREAS COVERED This review summarizes the new advancements in GS as drug carriers in cancer therapy, their capacity to overcome conventional shortcomings and the demand for innovative approaches in disease treatment. A detailed list of GS-based formulations along with a brief description on oligomeric surfactants have also been provided in this review. This article summarizes data from studies identified through literature database searches including PubMed and Google Scholar (2010-2023). EXPERT OPINION There are major challenges that need to be addressed in this field which restrict their progression toward clinical phase. Further research can focus on developing a theranostic system that can provide simultaneous real-time monitoring along with treatment care. Nevertheless, ensuring the safety parameters of these nanocarriers followed by their regulatory approval is a time-consuming and expensive process. A collaborative approach between regulatory bodies, research institutions, and pharmaceutical companies can speed up the process in the upcoming years.
Collapse
Affiliation(s)
- Oly Katari
- Department of Pharmaceutics, Centre for Pharmaceutical Nanotechnology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India
| | - Keshav Kumar
- Department of Pharmaceutics, Centre for Pharmaceutical Nanotechnology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India
| | - Shrushti Bhamble
- Department of Pharmaceutics, Centre for Pharmaceutical Nanotechnology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India
| | - Sanyog Jain
- Department of Pharmaceutics, Centre for Pharmaceutical Nanotechnology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India
| |
Collapse
|
4
|
Shi L, Jin Y, Bai L, Shang X, Li Y, Zhou R. Ultrasensitive
redox‐responsive ditelluride‐containing
fluorinated Gemini micelles for controlled drug release. J Appl Polym Sci 2023. [DOI: 10.1002/app.53719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- Liangjie Shi
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, National Engineering Research Center of Clean Technology in Leather Industry Sichuan University Chengdu People's Republic of China
| | - Yong Jin
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, National Engineering Research Center of Clean Technology in Leather Industry Sichuan University Chengdu People's Republic of China
| | - Long Bai
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, National Engineering Research Center of Clean Technology in Leather Industry Sichuan University Chengdu People's Republic of China
| | - Xiang Shang
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, National Engineering Research Center of Clean Technology in Leather Industry Sichuan University Chengdu People's Republic of China
| | - Yupeng Li
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, National Engineering Research Center of Clean Technology in Leather Industry Sichuan University Chengdu People's Republic of China
| | - Rong Zhou
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, National Engineering Research Center of Clean Technology in Leather Industry Sichuan University Chengdu People's Republic of China
| |
Collapse
|
5
|
Adel F, Shaaban AFF, El-Dougdoug W, Tantawy AH, Metwally AM. Novel synthesized amide-incorporating copolymeric surfactants based on natural wastes as petro-dispersing agents: Design, synthesis, and characterizations. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
6
|
Zhang W, Wang Y, Wang S, Guo Z, Zhang C, Zhu X, Zhang G. Hyperbranched ionic surfactants with polyether skeleton: Synthesis, properties and used as stabilizer for emulsion polymerization. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
7
|
Reactive Oxygen Species-Responsive Miktoarm Amphiphile for Triggered Intracellular Release of Anti-Cancer Therapeutics. Polymers (Basel) 2021; 13:polym13244418. [PMID: 34960969 PMCID: PMC8705129 DOI: 10.3390/polym13244418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 11/25/2022] Open
Abstract
Reactive oxygen species (ROS)-responsive nanocarriers have received considerable research attention as putative cancer treatments because their tumor cell targets have high ROS levels. Here, we synthesized a miktoarm amphiphile of dithioketal-linked ditocopheryl polyethylene glycol (DTTP) by introducing ROS-cleavable thioketal groups as linkers between the hydrophilic and hydrophobic moieties. We used the product as a carrier for the controlled release of doxorubicin (DOX). DTTP has a critical micelle concentration (CMC) as low as 1.55 μg/mL (4.18 × 10−4 mM), encapsulation efficiency as high as 43.6 ± 0.23% and 14.6 nm particle size. The DTTP micelles were very responsive to ROS and released their DOX loads in a controlled manner. The tocopheryl derivates linked to DTTP generated ROS and added to the intracellular ROS in MCF-7 cancer cells but not in HEK-293 normal cells. In vitro cytotoxicity assays demonstrated that DOX-encapsulated DTTP micelles displayed strong antitumor activity but only slightly increased apoptosis in normal cells. This ROS-triggered, self-accelerating drug release device has high therapeutic efficacy and could be a practical new strategy for the clinical application of ROS-responsive drug delivery systems.
Collapse
|
8
|
Lima AC, Reis RL, Ferreira H, Neves NM. Glutathione Reductase-Sensitive Polymeric Micelles for Controlled Drug Delivery on Arthritic Diseases. ACS Biomater Sci Eng 2021; 7:3229-3241. [PMID: 34161062 DOI: 10.1021/acsbiomaterials.1c00412] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Inflammation plays an essential role in arthritis development and progression. Despite the advances in the pharmaceutical field, current treatments still present low efficacy and severe side effects. Considering the high activity of the glutathione reductase (GR) enzyme in inflamed joints, a distinctive drug delivery system sensitive to the GR enzyme was designed for efficient drug delivery on arthritic diseases. A linear amphiphilic polymer composed of methoxypolyethylene glycol amine-glutathione-palmitic acid (mPEG-GSHn-PA) was synthesized and the intermolecular oxidation of the thiol groups from GSHs retain the drug inside the resulting micelles. Stable polymeric micelles of 100 nm of size presented a loading capacity of dexamethasone (Dex) up to 65%. Although in physiological conditions the Dex release presented slow and sustained kinetics, in the presence of the GR enzyme, there was a burst release (stimuli-responsive properties). Biological assays demonstrated their cytocompatibility in contact with human articular chondrocytes, macrophages, and endothelial cells as well as their hemocompatibility. Importantly, in an in vitro model of inflammation, the polymeric micelles promoted a controlled drug release in the presence of GR, exhibiting a higher efficacy than the free Dex while reducing the negative effects of the drug into normal cells. In conclusion, this formulation is a promising approach to treat arthritic diseases and other inflammatory conditions.
Collapse
Affiliation(s)
- Ana Cláudia Lima
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco 4805-017, Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco 4805-017, Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães Portugal
| | - Helena Ferreira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco 4805-017, Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães Portugal
| | - Nuno M Neves
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco 4805-017, Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães Portugal
| |
Collapse
|
9
|
Chen Q, Liu W, Liu H, Huang X, Shang Y, Liu H. Molecular Dynamics Simulations and Density Functional Theory on Unraveling Photoresponsive Behavior of Wormlike Micelles Constructed by 12-2-12·2Br - and trans- ortho-Methoxy Cinnamate. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:9499-9509. [PMID: 32683870 DOI: 10.1021/acs.langmuir.0c01476] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Photoresponsive systems with controllable self-assembly morphologies and adjustable rheological properties have attracted widespread interest by researchers in the past few years. Among them, the photoresponsive systems consisting of ortho-methoxycinnamic (OMCA) and Gemini surfactants are endowed with rich self-assemblies with different states and in different scales including spherical micelles, wormlike micelles, vesicles, aqueous two-phase system (ATPS), etc. All these self-assemblies display excellent photoresponsive behavior. However, the mechanism of these photoresponsive behaviors has not been unraveled systematically so far. In this study, molecular dynamics (MD) simulations, density functional theory (DFT) calculations, transmission electron microscopy, and rheology are employed to investigate the photoresponsive behaviors of wormlike micelles caused by photoisomerization of trans-OMCA in 12-2-12·2Br-/trans-OMCA solutions and to unravel the underlying mechanisms of these photoresponsive behaviors. The experimental results show that 12-2-12·2Br-/trans-OMCA micelles display photoresponsiveness after UV-light irradiation, with the transformation of micellar morphologies from wormlike micelle to spherical micelles. In MD simulations, certain micelle morphologies in experiments and the specific packing between 12-2-12·2Br-/OMCA were successfully captured. The larger three-dimensional structure and steric hindrance of cis-OMCA disturb the interior structure of micelles. The stronger hydrophilicity of cis-OMCA induces the escape of cis-OMCA from the interval of micelles to the solution. The energy results prove that trans-OMCA associates more strongly with 12-2-12·2Br- than cis-OMCA. These causes lead to the fission and repacking of wormlike micelles.
Collapse
Affiliation(s)
- Qizhou Chen
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wenxiu Liu
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hengjiang Liu
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiangrong Huang
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yazhuo Shang
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Honglai Liu
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
10
|
Shi L, Jin Y, Du W, Lai S, Shen Y, Zhou R. Diselenide-containing nonionic gemini polymeric micelles as a smart redox-responsive carrier for potential programmable drug release. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122551] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
11
|
Yu Z, Reynaud F, Lorscheider M, Tsapis N, Fattal E. Nanomedicines for the delivery of glucocorticoids and nucleic acids as potential alternatives in the treatment of rheumatoid arthritis. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1630. [PMID: 32202079 DOI: 10.1002/wnan.1630] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 03/01/2020] [Accepted: 03/03/2020] [Indexed: 12/18/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease that affects 0.5-1% of the world population. Current treatments include on one hand non-steroidal anti-inflammatory drugs and glucocorticoids (GCs) for treating pain and on the other hand disease-modifying anti-rheumatic drugs such as methotrexate, Janus kinase inhibitors or biologics such as antibodies targeting mainly cytokine expression. More recently, nucleic acids such as siRNA, miRNA, or anti-miRNA have shown strong potentialities for the treatment of RA. This review discusses the way nanomedicines can target GCs and nucleic acids to inflammatory sites, increase drug penetration within inflammatory cells, achieve better subcellular distribution and finally protect drugs against degradation. For GCs such a targeting effect would allow the treatment to be more effective at lower doses and to reduce the administration frequency as well as to induce much fewer side-effects. In the case of nucleic acids, particularly siRNA, knocking down proteins involved in RA, could importantly be facilitated using nanomedicines. Finally, the combination of both siRNA and GCs in the same carrier allowed for the same cell to target both the GCs receptor as well as any other signaling pathway involved in RA. Nanomedicines appear to be very promising for the delivery of conventional and novel drugs in RA therapeutics. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Biology-Inspired Nanomaterials > Nucleic Acid-Based Structures.
Collapse
Affiliation(s)
- Zhibo Yu
- Institut Galien Paris-Sud, CNRS, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Franceline Reynaud
- Institut Galien Paris-Sud, CNRS, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France.,School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mathilde Lorscheider
- Institut Galien Paris-Sud, CNRS, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Nicolas Tsapis
- Institut Galien Paris-Sud, CNRS, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Elias Fattal
- Institut Galien Paris-Sud, CNRS, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| |
Collapse
|
12
|
Aggregation behaviour of tetracaine hydrochloride with Gemini surfactants and the formation of silver nanoparticles using drug-Gemini surfactants mixture. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2018.12.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
Srivastava A, Liu C, Lv J, kumar deb D, Qiao W. Enhanced intercellular release of anticancer drug by using nano-sized catanionic vesicles of doxorubicin hydrochloride and gemini surfactants. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.03.065] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
14
|
Liang S, Han L, Mu W, Jiang D, Hou T, Yin X, Pang X, Yang R, Liu Y, Zhang N. Carboplatin-loaded SMNDs to reduce GSH-mediated platinum resistance for prostate cancer therapy. J Mater Chem B 2018; 6:7004-7014. [DOI: 10.1039/c8tb01721b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Glutathione (GSH)-mediated drug resistance can strongly weaken the therapeutic efficiency of platinum(ii).
Collapse
|