1
|
Cabral LL, Bottini RCR, Gonçalves AJ, Junior MM, Rizzo-Domingues RCP, Lenzi MK, Nagalli A, Passig FH, Dos Santos PM, de Carvalho KQ. Food dye adsorption in single and ternary systems by the novel passion fruit peel biochar adsorbent. Food Chem 2025; 464:141592. [PMID: 39406133 DOI: 10.1016/j.foodchem.2024.141592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/05/2024] [Accepted: 10/07/2024] [Indexed: 11/21/2024]
Abstract
This study evaluated the passion fruit peel biochar (PFPB) as a novel adsorbent for synthetic food dyes indigotine blue (IB), tartrazine yellow (TY), and ponceau 4R (P4R) removal in single and ternary systems. A macroporous structure and a predominance of basic groups characterized PFPB. The pH study revealed better adsorption at pH 2.0. The response surface methodology optimization for adsorbent dosage and temperature predicted removal efficiencies of 100 % for IB, 79.8 % for TY, and 84.4 % for P4R. Elovich and Redlich-Peterson models better described kinetic and equilibrium, respectively, suggesting the contribution of chemical interactions. Thermodynamic data revealed endothermic, with an inordinate degree and spontaneous adsorption. In the ternary systems, antagonistic effects of interaction were noticed. The adsorption of synthetic effluents showed promising results with removal efficiencies of 99.6 % (IB), 60.2 % (TY), and 51.8 % (P4R). Therefore, we concluded that PFPB is a potential alternative low-cost synthetic food dye removal adsorbent.
Collapse
Affiliation(s)
- Lucas Lacerda Cabral
- Federal University of Technology - Paraná (UTFPR), Environmental Sciences and Technology Graduate Program, Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340 Curitiba, Paraná, Brazil.
| | - Rúbia Camila Ronqui Bottini
- Federal University of Technology - Paraná (UTFPR), Chemistry and Biology Academic Department, Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340 Curitiba, Paraná, Brazil.
| | - Alexandre José Gonçalves
- Federal University of Technology - Paraná (UTFPR), Civil Engineering Graduate Program, Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340 Curitiba, Paraná, Brazil.
| | - Milton Manzoni Junior
- Federal University of Technology - Paraná (UTFPR), Civil Engineering Graduate Program, Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340 Curitiba, Paraná, Brazil.
| | - Roberta Carolina Pelissari Rizzo-Domingues
- Federal University of Technology - Paraná (UTFPR), Chemistry and Biology Academic Department, Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340 Curitiba, Paraná, Brazil.
| | - Marcelo Kaminski Lenzi
- Federal University of Paraná (UFPR), Chemical Engineering Department, Centro Politécnico, Jardim das Américas, postal code 19011, 81531-980 Curitiba, Paraná, Brazil.
| | - André Nagalli
- Federal University of Technology - Paraná (UTFPR), Civil Construction Academic Department, Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340 Curitiba, Paraná, Brazil.
| | - Fernando Hermes Passig
- Federal University of Technology - Paraná (UTFPR), Chemistry and Biology Academic Department, Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340 Curitiba, Paraná, Brazil.
| | - Poliana Macedo Dos Santos
- Federal University of Technology - Paraná (UTFPR), Chemistry and Biology Academic Department, Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340 Curitiba, Paraná, Brazil.
| | - Karina Querne de Carvalho
- Federal University of Technology - Paraná (UTFPR), Civil Construction Academic Department, Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340 Curitiba, Paraná, Brazil.
| |
Collapse
|
2
|
Shang J, He J, Xu Z, Zeng Y, Wang Y, Zhang K. Effect of High-Energy Electron Beam Irradiation on the Structure and Thermoelectric Properties of Polypyrrole. Polymers (Basel) 2024; 16:3572. [PMID: 39771424 PMCID: PMC11679057 DOI: 10.3390/polym16243572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/14/2024] [Accepted: 12/15/2024] [Indexed: 01/11/2025] Open
Abstract
The effects of different doses (10-100 kGy) of electron beams on the molecular structure, microstructure, and thermoelectric properties of polypyrrole (PPy) under high-energy electron beam irradiation (10 MeV) were studied. The results showed that after electron beam irradiation, the conductivity of PPy increased slightly, but the Seebeck coefficient and power factor remained relatively stable. The structural analysis of FTIR, Raman spectroscopy, and X-ray diffraction indicated that the molecular structure of PPy was strongly stable, and its microstructure was only slightly affected by electron beam irradiation. Within different dose ranges, the particle size of PPy remained unchanged, indicating that PPy has outstanding radiation resistance performance.
Collapse
Affiliation(s)
- Jie Shang
- Shanxi Key Laboratory for Radiation Safety and Protection, CNNC Key Laboratory for Radiation Protection Technology, China Institute for Radiation Proctection, Taiyuan 030006, China;
| | - Jia He
- Key Laboratory of Radiation Physics and Technology, Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China (K.Z.)
| | - Ziheng Xu
- Key Laboratory of Radiation Physics and Technology, Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China (K.Z.)
| | - Yufeng Zeng
- Sichuan Environment and Protection Engineering Co., Ltd., China National Nuclear Corporation, Guangyuan 628000, China
| | - Yihan Wang
- Key Laboratory of Radiation Physics and Technology, Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China (K.Z.)
| | - Kun Zhang
- Key Laboratory of Radiation Physics and Technology, Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China (K.Z.)
| |
Collapse
|
3
|
Şenol ZM, El Messaoudi N, Ciğeroglu Z, Miyah Y, Arslanoğlu H, Bağlam N, Kazan-Kaya ES, Kaur P, Georgin J. Removal of food dyes using biological materials via adsorption: A review. Food Chem 2024; 450:139398. [PMID: 38677180 DOI: 10.1016/j.foodchem.2024.139398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 04/29/2024]
Abstract
It is alarming that synthetic food dyes (FD) are widely used in various industries and that these facilities discharge their wastewater into the environment without treating it. FDs mixed into industrial wastewater pose a threat to the environment and human health. Therefore, removing FDs from wastewater is very important. This review explores the burgeoning field of FD removal from wastewater through adsorption using biological materials (BMs). By synthesizing a wealth of research findings, this comprehensive review elucidates the diverse array of BMs employed, ranging from algae and fungi to agricultural residues and microbial biomass. Furthermore, this review investigates challenges in practical applications, such as process optimization and scalability, offering insights into bridging the gap between laboratory successes and real-world implementations. Harnessing the remarkable adsorptive potential of BMs, this review presents a roadmap toward transformative solutions for FD removal, promising cleaner and safer production practices in the food and beverage industry.
Collapse
Affiliation(s)
- Zeynep Mine Şenol
- Department of Nutrition and Diet, Faculty of Health Sciences, Cumhuriyet University, Sivas 58140, Turkey.
| | - Noureddine El Messaoudi
- Laboratory of Applied Chemistry and Environment, Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco
| | - Zeynep Ciğeroglu
- Department of Chemical Engineering, Faculty of Engineering and Natural Sciences, Usak University, Usak 64300, Turkey
| | - Youssef Miyah
- Laboratory of Materials, Processes, Catalysis, and Environment, Higher School of Technology, University Sidi Mohamed Ben Abdellah, Fez, Morocco; Ministry of Health and Social Protection, Higher Institute of Nursing Professions and Health Techniques, Fez/Meknes, Morocco
| | - Hasan Arslanoğlu
- Çanakkale Onsekiz Mart University, Engineering Faculty, Chemical Engineering, Çanakkale, Turkey
| | - Nurcan Bağlam
- Department of Nutrition and Diet, Faculty of Health Sciences, Cumhuriyet University, Sivas 58140, Turkey
| | - Emine Sena Kazan-Kaya
- Chemical Engineering Department, Faculty of Engineering, Gebze Technical University, Kocaeli 41400, Turkey
| | - Parminder Kaur
- Circular Economy Solutions (KTR), Geological Survey of Finland, 70210 Kuopio, Finland
| | - Jordana Georgin
- Department of Civil and Environmental, Universidad de la Costa, CUC, Calle 58 #55-66, Barranquilla, Atlántico, Colombia
| |
Collapse
|
4
|
Grigoraș CG, Simion AI, Drob C. Hydrogels Based on Chitosan and Nanoparticles and Their Suitability for Dyes Adsorption from Aqueous Media: Assessment of the Last-Decade Progresses. Gels 2024; 10:211. [PMID: 38534629 PMCID: PMC10970373 DOI: 10.3390/gels10030211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 03/28/2024] Open
Abstract
Water is one of the fundamental resources for the existence of humans and the environment. Throughout time, due to urbanization, expanding population, increased agricultural production, and intense industrialization, significant pollution with persistent contaminants has been noted, placing the water quality in danger. As a consequence, different procedures and various technologies have been tested and used in order to ensure that water sources are safe for use. The adsorption process is often considered for wastewater treatment due to its straightforward design, low investment cost, availability, avoidance of additional chemicals, lack of undesirable byproducts, and demonstrated significant efficacious potential for treating and eliminating organic contaminants. To accomplish its application, the need to develop innovative materials has become an essential goal. In this context, an overview of recent advances in hydrogels based on chitosan and nanocomposites and their application for the depollution of wastewater contaminated with dyes is reported herein. The present review focuses on (i) the challenges raised by the synthesis process and characterization of the different hydrogels; (ii) the discussion of the impact of the main parameters affecting the adsorption process; (iii) the understanding of the adsorption isotherms, kinetics, and thermodynamic behavior; and (iv) the examination of the possibility of recycling and reusing the hydrogels.
Collapse
Affiliation(s)
- Cristina-Gabriela Grigoraș
- Department of Food and Chemical Engineering, Faculty of Engineering, “Vasile Alecsandri” University of Bacău, Calea Mărășești 157, 600115 Bacău, Romania
| | - Andrei-Ionuț Simion
- Department of Food and Chemical Engineering, Faculty of Engineering, “Vasile Alecsandri” University of Bacău, Calea Mărășești 157, 600115 Bacău, Romania
| | - Cătălin Drob
- Department of Engineering and Management, Mechatronics, Faculty of Engineering, “Vasile Alecsandri” University of Bacău, Calea Mărășești 157, 600115 Bacău, Romania;
| |
Collapse
|
5
|
Mostafa AG, Abd El-Hamid AI, Akl MA. Surfactant-supported organoclay for removal of anionic food dyes in batch and column modes: adsorption characteristics and mechanism study. APPLIED WATER SCIENCE 2023; 13:163. [DOI: 10.1007/s13201-023-01959-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/29/2023] [Indexed: 09/02/2023]
Abstract
AbstractThis study aimed to create CTAB-modified bentonite organoclay (Bt@CTAB) by mixing the naturally occurring mineral bentonite (Bt) with the cationic surfactant cetyltrimethylammonium bromide (CTAB). Elemental analysis, N2 adsorption–desorption isotherm, scanning electron microscopy (SEM), FTIR spectroscopy, XRD, and thermogravimetric (TGA) analysis have been employed to analyze both the unmodified Bt and the Bt@CTAB organoclay. The dye sorption onto Bt@CTAB organoclay was investigated in the batch and column modes using aqueous solutions of anionic food dyes, viz., Sunset yellow FCF (E110), Azorubine (E122), and Ponceau 4R (E124) (individually or in a mixture). Experimental variables affecting the adsorption process, such as initial dye concentration, contact time, temperature, pH, and adsorbent dose, are evaluated. From the kinetic investigations, the adsorption of E110, E122, and E124 dyes well matched the pseudo-second-order kinetic model. E110 and E122 dyes adsorption onto Bt@CTAB attained equilibrium in 120 min while attained in 240 min for E124. The investigated food dyes were expected to achieve maximum adsorption efficiencies at concentration of 100 ppm of (E110 and E124) and 150 ppm of (E124), an adsorbent dosage of 0.4 gL−1, and an initial pH 5. In addition, Langmuir model best fits the sorption isotherm data, with the maximum adsorption capacity at 303 K being 238 mg/g, 248.75 mg/g, and 358.25 mg/g for E110, E122, and E124, respectively. The Bt@CTAB organoclay can be regenerated up to the 4th cycle successfully. The thermodynamic studies revealed the spontaneous and exothermic nature of the adsorption of these anionic dyes onto Bt@CTAB organoclay. The prepared cationic Bt@CTAB organoclay was successfully applied for the removal of E110, E122, and E124 from real water samples, synthetic effluents, and colored soft drinks with a recovery (R%) higher than 95%. The plausible adsorption mechanism of E110, E122, and E124 onto Bt@CTAB organoclay is proposed to be due to electrostatic interaction and hydrogen bond formation. Finally, the present study shows that Bt@CTAB organoclay may be employed efficiently and effectively to remove anionic food dyes from a wide range of real water and colored soft drinks.
Collapse
|
6
|
Magnetic chitosan-silk fibroin hydrogel/graphene oxide nanobiocomposite for biological and hyperthermia applications. Carbohydr Polym 2023; 300:120246. [DOI: 10.1016/j.carbpol.2022.120246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/28/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022]
|
7
|
Li X, Wang Q, Wang X, Wang Z. Synergistic Effects of Graphene Oxide and Pesticides on Fall Armyworm, Spodoptera frugiperda. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3985. [PMID: 36432271 PMCID: PMC9692536 DOI: 10.3390/nano12223985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/26/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
Fall armyworm Spodoptera frugiperda, a native insect pest in tropical and subtropical America, has rapidly spread to most parts of China and become a major pest of corn and other crops since invading in early January 2019. As an emergency and important control measure, chemical control of S. frugiperda has the advantages of quick effect and low cost. However, long-term and large-scale use of pesticides might pollute the environment and increase pest resistance. By improving the control effect and reducing the dosage of chemical pesticides, graphene oxide (GO) is used synergistically with insecticides to increase control efficacy to achieve low-cost and sustainable management of insect pests as a new type of synergist. In this study, graphene oxide was compounded with insecticides to form nanocomposites. To clarify pest physiological responses, the laboratory toxicity of graphene oxide-insecticide nanocomposites was measured on the larvae of S. frugiperda. The results demonstrated that GO could enhance the activity of four selected pesticides: chlorantraniliprole (Chl), beta cypermethrin (Bet), methoxyhydrazide (Met) and spinetoram (Spi). Compared with pesticides alone, the toxicity of Chl-GO, Bet-GO, Met-GO and Spi-GO mixtures to the third instar larvae of S. frugiperda increased by 1.56, 1.54, 2.53 and 1.74 times, respectively. The easy preparation and higher bioactivity of GO-pesticide nanocomposites indicated their promising application potential in pest control.
Collapse
Affiliation(s)
- Xue Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Plant Protection College, Hebei Agricultural University, Baoding 071000, China
| | - Qinying Wang
- Plant Protection College, Hebei Agricultural University, Baoding 071000, China
| | - Xiuping Wang
- Analysis and Testing Center, Hebei Normal University of Science and Technology, Qinhuangdao 066000, China
| | - Zhenying Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
8
|
Muthukumaran P, Suresh Babu P, Shyamalagowri S, Aravind J, Kamaraj M, Govarthanan M. Polymeric biomolecules based nanomaterials: Production strategies and pollutant mitigation as an emerging tool for environmental application. CHEMOSPHERE 2022; 307:136008. [PMID: 35985386 DOI: 10.1016/j.chemosphere.2022.136008] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/19/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
The ever-exploding global population coupled with its anthropogenic impact has imparted unparalleled detrimental effects on the environment and mitigating them has emerged as the prime challenge and focus of the current century. The niche of nanotechnology empowered by composites of biopolymers in the handling of xenobiotics and environmental clean-up has an unlimited scope. The appositeness of biopolymer-nanoparticles (Bp-NPs) for environmental contaminant mitigation has received unique consideration due to its exclusive combination of physicochemical characteristics and other attributes. The current review furnishes exhaustive scrutiny of the current accomplishments in the development of Bp-NPs and biopolymer nanomaterials (Bp-NMs) from various polymeric biomolecules. Special attention was provided for polymeric biomolecules such as cellulose, lignin, starch, chitin, and chitosan, whereas limited consideration on gelatin, alginate, and gum for the development of Bp-NPs and Bp-NMs; together with coverage of literature. Promising applications of tailored biopolymer hybrids such as Bp-NPs and Bp-NMs on environmentally hazardous xenobiotics handling and pollution management are discussed as to their notable environmental applications.
Collapse
Affiliation(s)
- P Muthukumaran
- Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, 641049, Tamil Nadu, India
| | - P Suresh Babu
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602105, Tamil Nadu, India
| | - S Shyamalagowri
- PG and Research Department of Botany, Pachaiyappa's College, Chennai, 600030, TamilNadu, India
| | - J Aravind
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602105, Tamil Nadu, India
| | - M Kamaraj
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology -Ramapuram Campus, Chennai, 600089, Tamil Nadu, India.
| | - M Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, South Korea; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, India.
| |
Collapse
|
9
|
El-Sawy AM, Abdo MH, Darweesh M, Salahuddin NA. Electrospinning of PANI/GO nanocomposite and PANI/CS blend for high removal efficiency of Ni (II) from aqueous solution. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Hassan HM, El-Aassar M, El-Hashemy MA, Betiha MA, Alzaid M, Alqhobisi AN, Alzarea LA, Alsohaimi IH. Sulfanilic acid-functionalized magnetic GO as a robust adsorbent for the efficient adsorption of methylene blue from aqueous solution. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119603] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
11
|
Zhang W, Gao F, Cheng C, Lu L, Du H, Li Y, Hou W, Yang Y, Wang X. Evaluation of sulfonated oxidized chitosan antifungal activity against Fusarium graminearum. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:1495-1510. [PMID: 35443893 DOI: 10.1080/09205063.2022.2068942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Chitosan biomaterials are widely used in the biological area because of their broad-spectrum antibacterial activity. However, chitosan cannot be dissolved in a neutral solution, limiting its application in various fields seriously. In this study, water-soluble sulfonated oxidized chitosan (SOCS) with antifungal activity were prepared by oxidization and sulfonation. Its structure was clearly confirmed by spectroscopy data (FTIR, 1H NMR, 13C NMR) and elemental analysis. SEM images of OCS and SOCS revealed that there was a little curly and an irregular sheet-like morphologies on them which was attributed to the oxidation and sulfonation on CS. Moreover, the FTIR and NMR indicated that -OH on the CS was oxidized into -COOH on the OCS and -SO3H groups on the SOCS. The EDS results of OCS and SOCS confirmed the presence of the oxygen element in OCS and the S element in SOCS. All studies confirmed the OCS and SOCS were synthesized successfully. Furthermore, the inhibitory activity of SOCS biocomposites against plant pathogenic fungi, (Fusarium graminearum), was investigated. The results showed that the SOCS have significant inhibitory effects on the mycelial growth of F. graminearum. The EC50 value of SOCS against F. graminearum is 79.46 μg/mL. The research results presented above indicated that SOCS can be used as a candidate material for the control of plant pathogenic fungi, and can broaden the application of chitosan materials in plant protection and sustainable agriculture.Research highlightsSOCS showed better solubility in deionized water.The antifungal effect of SOCS dissolved in acetic acid was higher than that of CS dissolved in acetic acid.SOCS dissolved in water can cause an inhibitory effect on F. graminearum at lower concentrations.
Collapse
Affiliation(s)
- Wenjing Zhang
- Hebei Key Laboratory of Active Components and Functions in Natural Products, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Fengkun Gao
- Hebei Key Laboratory of Active Components and Functions in Natural Products, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Caihong Cheng
- Hebei Key Laboratory of Active Components and Functions in Natural Products, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Lei Lu
- Hebei Key Laboratory of Active Components and Functions in Natural Products, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Haoyang Du
- Hebei Key Laboratory of Active Components and Functions in Natural Products, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Yun Li
- Research Center of Rural Vitalization, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Wenlong Hou
- Hebei Key Laboratory of Active Components and Functions in Natural Products, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Yuedong Yang
- Hebei Key Laboratory of Active Components and Functions in Natural Products, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Xiuping Wang
- Hebei Key Laboratory of Active Components and Functions in Natural Products, Hebei Normal University of Science and Technology, Qinhuangdao, China
| |
Collapse
|
12
|
Sharifpour E, Arabkhani P, Sadegh F, Mousavizadeh A, Asfaram A. In-situ hydrothermal synthesis of CNT decorated by nano ZnS/CuO for simultaneous removal of acid food dyes from binary water samples. Sci Rep 2022; 12:12381. [PMID: 35858982 PMCID: PMC9300655 DOI: 10.1038/s41598-022-16676-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 07/13/2022] [Indexed: 11/16/2022] Open
Abstract
The zinc sulfide/copper oxide-carbon nanotube nanocomposite (ZnS/CuO-CNT) was fabricated by using an in-situ hydrothermal synthesis method and was used for simultaneous ultrasound-assisted adsorptive removal of a binary mixture of ponceau 4R (P4R) and tartrazine (TA) acid food dyes from contaminated water. The as-synthesized ZnS/CuO-CNT was described by FESEM, XRD, FTIR, BET, and zeta potential analysis. The results included nested network morphology, high purity with the crystalline structure, oxygen-containing functional groups, mesoporous/micropores texture with cumulate interspace, specific surface area of 106.54 m2 g-1, and zero-point charge (pHzpc) of 5.3. In adsorption experiments, the simultaneous effect of main independent variables, including solution pH, adsorbent dosage, concentration of each dye, temperature, and sonication time on the removal efficiency of dyes was studied systematically using the central composite design (CCD) method based on response surface methodology (RSM). Also, the second-order multivariate equation was presented to determine the relationship between the removal efficiencies of P4R and AT dyes and six independent effective variables. The high correlation coefficient (R2 ≥ 0.99), significant p-value (P < 0.0001), and non-significant lack-of-fit (P > 0.05) showed the high accuracy, and validity of the proposed model to predict the removal efficiency of P4R and TA acid food dyes. The experimental removal efficiency for P4R and TA dyes was found to be 98.45 ± 2.54, and 99.21 ± 2.23, respectively. Also, the Langmuir maximum adsorption capacity for P4R and TA dyes was determined to be 190.1 mg g-1 and 183.5 mg g-1, respectively. Finally, the adsorbent's reusability was tested for six periods and could be reused repeatedly without significant reduction in adsorption performance.
Collapse
Affiliation(s)
- Ebrahim Sharifpour
- Social Determinants of Health Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Payam Arabkhani
- Department of Chemistry, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Fatemeh Sadegh
- Department of Chemistry, Faculty of Sciences, University of Sistan of Baluchestan, Zahedan, Iran
| | - Ali Mousavizadeh
- Social Determinants of Health Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Arash Asfaram
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.
| |
Collapse
|
13
|
Gellan gum and pectin-functionalised magnetic graphene oxide nanocomposites as nanocarriers for permethrin to control mosquito larvae. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04341-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
14
|
MoS2 composite hydrogel supported by two-dimensional montmorillonite nanosheets for Pb2+ removal from water. Chem Phys 2022. [DOI: 10.1016/j.chemphys.2022.111477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
15
|
Recent advances in Ponceau dyes monitoring as food colorant substances by electrochemical sensors and developed procedures for their removal from real samples. Food Chem Toxicol 2022; 161:112830. [PMID: 35077828 DOI: 10.1016/j.fct.2022.112830] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/04/2022] [Accepted: 01/19/2022] [Indexed: 12/13/2022]
Abstract
Ponceau dyes are one of the food coloring materials that are added to various pharmaceutical, health and food products and give them an appearance. These dyes contain contaminants such as Benzidine, 4-Aminobiphenyl, and 4-Aminoazobenzene that are safe in small amounts, but they are not approved by the US Food and Drug Administration (US-FDA) for human consumption. This study comprehensively was reviewed the properties, applications, chemistry, and toxicity of Ponceau dyes as food colorant substances. Electroanalysis of Ponceau dyes was discussed in detail, and the various electrochemical sensors used to detect and monitor these dyes as food colorant were examined. The applied methods of removing and degradation of these dyes in municipal and industrial wastes were also discussed. Conclusions and future perspectives to motivate future research were also explored.
Collapse
|
16
|
Bi C, Zhang C, Ma F, Zhu L, Zhu R, Qi Q, Liu L, Dong H. Development of 3D porous Ag+ decorated PCN-222 @ graphene oxide-chitosan foam adsorbent with antibacterial property for recovering U(VI) from seawater. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119900] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
Heydari S, Asefnejad A, Hassanzadeh Nemati N, Goodarzi V, Vaziri A. Fabrication of multicomponent cellulose/polypyrrole composed with zinc oxide nanoparticles for improving mechanical and biological properties. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2021.105126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Zhang Y, He S, Zhang Y, Feng Y, Pan Z, Zhang M. Facile synthesis of PPy@MoS2 hollow microtubes for removal of cationic and anionic dyes in water treatment. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
19
|
Huyan C, Ding S, Lyu Z, Engelhard MH, Tian Y, Du D, Liu D, Lin Y. Selective Removal of Perfluorobutyric Acid Using an Electroactive Ion Exchanger Based on Polypyrrole@Iron Oxide on Carbon Cloth. ACS APPLIED MATERIALS & INTERFACES 2021; 13:48500-48507. [PMID: 34617724 DOI: 10.1021/acsami.1c09374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Perfluorobutyric acid (PFBA) is one type of perfluoroalkyl and polyfluoroalkyl substances (PFASs) and is widely used as an industrial compound. The removal of PFBA has attracted considerable scientific interests in recent decades because it causes environmental pollution and human diseases. Currently, the adsorption method has been used commonly to remove PFASs from wastewater. However, it is usually limited by the inevitable "secondary waste" produced in this treatment process. In this work, PFBA can be effectively removed by synergistic electrical switching ion exchange (ESIX) and a new type of nanostructured ion exchanger. Herein, the nanostructured ion exchanger has been designed and synthesized by coating a polypyrrole (PPy)@Fe2O3 nanoneedle on carbon cloth (PPy@Fe2O3 NN-CC). Results show that the PPy@Fe2O3 NN-CC nanocomposite enhances ion exchange speed and efficiency, which ensures its high adsorption capacity and rapid regeneration property, thereby reducing secondary waste. Moreover, ESIX based on the PPy@Fe2O3 NN-CC nanocomposite has high selectivity for adsorption of PFBA over other common anions in water, such as Cl-, SO42-, and NO3-.
Collapse
Affiliation(s)
- Chenxi Huyan
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Shichao Ding
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Zhaoyuan Lyu
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Mark H Engelhard
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Yuhao Tian
- Department of Civil and Environmental Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Dan Du
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Dong Liu
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Yuehe Lin
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| |
Collapse
|
20
|
VO TS. Progresses and expansions of chitosan-graphene oxide hybrid networks utilizing as adsorbents and their organic dye removal performances: A short review. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2021. [DOI: 10.18596/jotcsa.943623] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
21
|
Nanocomposite hydrogel based on sodium alginate, poly (acrylic acid), and tetraamminecopper (II) sulfate as an efficient dye adsorbent. Carbohydr Polym 2021; 267:118182. [PMID: 34119150 DOI: 10.1016/j.carbpol.2021.118182] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/29/2021] [Accepted: 05/05/2021] [Indexed: 12/19/2022]
Abstract
In this study, a novel nanocomposite hydrogel (NCH) was prepared by in situ crosslinking and radical polymerization of acrylic acid (AA) in the presence of sodium alginate (Na-Alg), followed by loading of Cu2+ ions and reaction with ammonia. The main advantage of the synthesized NCH is the high adsorption of dye due to the large contact area. The structure of the NCH was studied by FT-IR spectroscopy, TEM, and SEM. TEM showed that the size of nanoparticles is about 5-30 nm. The adsorption of dye was studied by changing the different factors. The removal efficiency of Crystal Violet (CV) and Malachite Green (MG) was found to be more than 96% at concentration of 10 mg/L and pH = 6. The dye adsorption on the NCH is well described by Freundlich isotherm and pseudo-second-order kinetic models. The reusability experiments showed that about 95% of the initial adsorption was obtained after eight cycles.
Collapse
|
22
|
Graphene-Based Materials Immobilized within Chitosan: Applications as Adsorbents for the Removal of Aquatic Pollutants. MATERIALS 2021; 14:ma14133655. [PMID: 34209007 PMCID: PMC8269710 DOI: 10.3390/ma14133655] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/23/2021] [Accepted: 06/26/2021] [Indexed: 12/12/2022]
Abstract
Graphene and its derivatives, especially graphene oxide (GO), are attracting considerable interest in the fabrication of new adsorbents that have the potential to remove various pollutants that have escaped into the aquatic environment. Herein, the development of GO/chitosan (GO/CS) composites as adsorbent materials is described and reviewed. This combination is interesting as the addition of graphene to chitosan enhances its mechanical properties, while the chitosan hydrogel serves as an immobilization matrix for graphene. Following a brief description of both graphene and chitosan as independent adsorbent materials, the emerging GO/CS composites are introduced. The additional materials that have been added to the GO/CS composites, including magnetic iron oxides, chelating agents, cyclodextrins, additional adsorbents and polymeric blends, are then described and discussed. The performance of these materials in the removal of heavy metal ions, dyes and other organic molecules are discussed followed by the introduction of strategies employed in the regeneration of the GO/CS adsorbents. It is clear that, while some challenges exist, including cost, regeneration and selectivity in the adsorption process, the GO/CS composites are emerging as promising adsorbent materials.
Collapse
|
23
|
Fabrication of flexible graphene oxide paper-like adsorbent doped with magnetite nanoparticles for removal of dyes. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04492-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
24
|
Wu Y, Jia Z, Bo C, Dai X. Preparation of magnetic β-cyclodextrin ionic liquid composite material with different ionic liquid functional group substitution contents and evaluation of adsorption performance for anionic dyes. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126147] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Sadeghi M, Rafiee Z. Chiral poly(amide-imide)/ZnS nanocomposite as a new adsorbent for simultaneous removal of cationic dyes from aqueous solution. HIGH PERFORM POLYM 2021. [DOI: 10.1177/0954008320939144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A new adsorbent, poly(amide-imide)/zinc sulfide nanocomposite (PAI/ZnS NC), was fabricated and identified by Fourier-transform infrared spectroscopy, X-ray diffraction, energy-dispersive X-ray spectroscopy, field emission-scanning electron microscopy, and transmission electron microscopy. Then, the obtained NC was applied for the simultaneous removal of auramine O (AO) and rhodamine B (RB) dyes from aqueous solution via the interactions of hydrogen bonding, π– π stacking, and Lewis acid–base interaction. The effects of operational variables including pH, PAI/ZnS NC mass, AO and RB concentration, and sonication time on removal efficiency were examined and optimized values were found to be 8.0, 16 mg, 11 mg L−1, and 6 min, respectively. The adsorption capacities of PAI/ZnS NC for the removal of AO and RB dyes were found to be 70.92 and 91.74 mg g−1, respectively. Ultraviolet–visible spectrophotometer was used to determine the amount of residual dye in solution. Fitting the experimental equilibrium data to isotherm models such as Langmuir, Freundlich, Temkin, and Dubinin–Radushkevich reveals the suitability of the Langmuir model with high correlation coefficients ( R2 = 0.998 for AO and R2 = 0.999 for RB). Pseudo-first-order, pseudo-second-order, intraparticle diffusion, and Elovich kinetic models applicability was tested and the pseudo-second-order equation controls the kinetics of the adsorption process. Furthermore, this study establishes that PAI/ZnS NC can be successfully applied as a low-cost adsorbent and conserve its high efficiency after nine cycles for the removal of AO and RB dyes.
Collapse
Affiliation(s)
- Maryam Sadeghi
- Department of Chemistry, Yasouj University, Yasouj, Islamic Republic of Iran
| | - Zahra Rafiee
- Department of Chemistry, Yasouj University, Yasouj, Islamic Republic of Iran
| |
Collapse
|
26
|
da Silva Alves DC, Healy B, Pinto LADA, Cadaval TRS, Breslin CB. Recent Developments in Chitosan-Based Adsorbents for the Removal of Pollutants from Aqueous Environments. Molecules 2021; 26:594. [PMID: 33498661 PMCID: PMC7866017 DOI: 10.3390/molecules26030594] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/18/2021] [Accepted: 01/21/2021] [Indexed: 12/18/2022] Open
Abstract
The quality of water is continuously under threat as increasing concentrations of pollutants escape into the aquatic environment. However, these issues can be alleviated by adsorbing pollutants onto adsorbents. Chitosan and its composites are attracting considerable interest as environmentally acceptable adsorbents and have the potential to remove many of these contaminants. In this review the development of chitosan-based adsorbents is described and discussed. Following a short introduction to the extraction of chitin from seafood wastes, followed by its conversion to chitosan, the properties of chitosan are described. Then, the emerging chitosan/carbon-based materials, including magnetic chitosan and chitosan combined with graphene oxide, carbon nanotubes, biochar, and activated carbon and also chitosan-silica composites are introduced. The applications of these materials in the removal of various heavy metal ions, including Cr(VI), Pb(II), Cd(II), Cu(II), and different cationic and anionic dyes, phenol and other organic molecules, such as antibiotics, are reviewed, compared and discussed. Adsorption isotherms and adsorption kinetics are then highlighted and followed by details on the mechanisms of adsorption and the role of the chitosan and the carbon or silica supports. Based on the reviewed papers, it is clear, that while some challenges remain, chitosan-based materials are emerging as promising adsorbents.
Collapse
Affiliation(s)
- Daniele C. da Silva Alves
- Department of Chemistry, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland; (D.C.d.S.A.); (B.H.)
- School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, RS 96203-900, Brazil; (L.A.d.A.P.); (T.R.S.C.J.)
| | - Bronach Healy
- Department of Chemistry, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland; (D.C.d.S.A.); (B.H.)
| | - Luiz A. de Almeida Pinto
- School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, RS 96203-900, Brazil; (L.A.d.A.P.); (T.R.S.C.J.)
| | - Tito R. Sant’Anna Cadaval
- School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, RS 96203-900, Brazil; (L.A.d.A.P.); (T.R.S.C.J.)
| | - Carmel B. Breslin
- Department of Chemistry, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland; (D.C.d.S.A.); (B.H.)
| |
Collapse
|
27
|
|
28
|
Nano-hybrid based on polypyrrole/chitosan/grapheneoxide magnetite decoration for dual function in water remediation and its application to form fashionable colored product. ADV POWDER TECHNOL 2020. [DOI: 10.1016/j.apt.2020.01.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
29
|
Wang W, Wang J, Zhao Y, Bai H, Huang M, Zhang T, Song S. High-performance two-dimensional montmorillonite supported-poly(acrylamide-co-acrylic acid) hydrogel for dye removal. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 257:113574. [PMID: 31733952 DOI: 10.1016/j.envpol.2019.113574] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/18/2019] [Accepted: 11/03/2019] [Indexed: 06/10/2023]
Abstract
High-performance two-dimensional montmorillonite supported-poly (acrylamide-co-acrylic acid) hydrogel for dye removal was investigated. Montmorillonite cooperated with acrylamide and acrylic acid via polymerization, hydrogen-bond, amidation and electrostatic interactions to form the three-dimensional reticular-structured hydrogel with the free entrance for macromolecules. Adsorption tests revealed that the efficient removal (97%) for methylene blue at high concentration (200 mg/L) could be achieved via a small dose of hydrogel (0.5 g/L) within a short time (20 min). The excellent adsorption performance was profited from the electronegative surface and fully exposed reaction sites of two-dimensional montmorillonite, which could save the treatment cost and promote the removal effect compared with the conventional adsorbents. The adsorption process of methylene blue onto hydrogel could be fitted by both the pseudo-first-order and pseudo-second-order kinetics models, and the adsorption isotherm corresponded to the Sips model. The mechanism analysis based on Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy measurements illustrated that the reaction between carboxyl groups and methylene blue molecules as well as the cation-exchange enabled the hydrogel performing extraordinary adsorption efficiency.
Collapse
Affiliation(s)
- Wei Wang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China
| | - Jinggang Wang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China
| | - Yunliang Zhao
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China; Materials Research Institute, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Haoyu Bai
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China
| | - Muyang Huang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China
| | - Tingting Zhang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China
| | - Shaoxian Song
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China; Hubei Provincial Collaborative Innovation Center for High Efficient Utilization of Vanadium Resources, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China.
| |
Collapse
|
30
|
Gusain R, Kumar N, Ray SS. Recent advances in carbon nanomaterial-based adsorbents for water purification. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2019.213111] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
31
|
El-Sharkawy RG. Anchoring of green synthesized silver nanoparticles onto various surfaces for enhanced heterogeneous removal of brilliant green dye from aqueous solutions with error analysis study. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123871] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
32
|
Stejskal J. Interaction of conducting polymers, polyaniline and polypyrrole, with organic dyes: polymer morphology control, dye adsorption and photocatalytic decomposition. CHEMICAL PAPERS 2019. [DOI: 10.1007/s11696-019-00982-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
33
|
Lu F, Dong A, Ding G, Xu K, Li J, You L. Magnetic porous polymer composite for high performance adsorption of acid red 18 based on melamine resin and chitosan. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111515] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
34
|
Drumm FC, Grassi P, Georgin J, Tonato D, Pfingsten Franco DS, Chaves Neto JR, Mazutti MA, Jahn SL, Dotto GL. Potentiality of the Phoma sp. inactive fungal biomass, a waste from the bioherbicide production, for the treatment of colored effluents. CHEMOSPHERE 2019; 235:596-605. [PMID: 31276872 DOI: 10.1016/j.chemosphere.2019.06.169] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/19/2019] [Accepted: 06/22/2019] [Indexed: 06/09/2023]
Abstract
The potentiality of Phoma sp. inactive fungal biomass, waste from the bioherbicide production, was evaluated for the treatment of colored effluents containing Acid Red 18 (AR 18) dye. The batch experiments were performed to evaluate the following parameters: pH of the solution (2-10), dye concentration (50-200 mg L-1), adsorbent dose (0.5-2.5 g L-1), contact time (0-180 min) and temperature (298-328 K). The batch experiments using a synthetic dye solution revealed that Phoma sp. was efficient at pH of 2.0, 298 K and using a dosage of 1.25 g L-1. The process was fast, being the equilibrium reached within 180 min. The maximum value of biosorption capacity was 63.58 mg g-1, being the process favorable and exothermic. From the fixed bed assays, breakthrough curves were obtained, presenting a mass transfer zone of 7.08 cm and breakthrough time of 443 min. Phoma sp. was efficient to decolorize a simulated effluent, removing more than 90% of the color. From the obtained results, it can be concluded that Phoma sp. inactive biomass is a low-cost option to treat colored effluents in continuous and discontinuous biosorption modes. These indicate that Phoma sp. of inactive biomass is an option for the treatment of colored effluents.
Collapse
Affiliation(s)
- Fernanda Caroline Drumm
- Chemical Engineering Department, Federal University of Santa Maria, UFSM, Roraima Avenue, 1000, 97105-900, Santa Maria, RS, Brazil
| | - Patrícia Grassi
- Chemical Engineering Department, Federal University of Santa Maria, UFSM, Roraima Avenue, 1000, 97105-900, Santa Maria, RS, Brazil
| | - Jordana Georgin
- Civil Engineering Department, Federal University of Santa Maria, UFSM, Roraima Avenue, 1000, 97105-900, Santa Maria, RS, Brazil
| | - Denise Tonato
- Chemical Engineering Department, Federal University of Santa Maria, UFSM, Roraima Avenue, 1000, 97105-900, Santa Maria, RS, Brazil
| | - Dison Stracke Pfingsten Franco
- Chemical Engineering Department, Federal University of Santa Maria, UFSM, Roraima Avenue, 1000, 97105-900, Santa Maria, RS, Brazil
| | - José Roberto Chaves Neto
- Center of Rural Sciences, Federal University of Santa Maria, UFSM, Roraima Avenue, 1000, 97105-900, Santa Maria, RS, Brazil
| | - Marcio Antonio Mazutti
- Chemical Engineering Department, Federal University of Santa Maria, UFSM, Roraima Avenue, 1000, 97105-900, Santa Maria, RS, Brazil
| | - Sérgio Luiz Jahn
- Chemical Engineering Department, Federal University of Santa Maria, UFSM, Roraima Avenue, 1000, 97105-900, Santa Maria, RS, Brazil
| | - Guilherme Luiz Dotto
- Chemical Engineering Department, Federal University of Santa Maria, UFSM, Roraima Avenue, 1000, 97105-900, Santa Maria, RS, Brazil.
| |
Collapse
|
35
|
Adsorption behaviour of Eriochrome Black T from water onto a cross-linked β-cyclodextrin polymer. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123582] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
36
|
Chen Y, Long W, Xu H. Efficient removal of Acid Red 18 from aqueous solution by in-situ polymerization of polypyrrole-chitosan composites. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.110888] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
37
|
Mallakpour S, Rashidimoghadam S. Poly(vinyl alcohol)/Vitamin C-multi walled carbon nanotubes composites and their applications for removal of methylene blue: Advanced comparison between linear and nonlinear forms of adsorption isotherms and kinetics models. POLYMER 2019. [DOI: 10.1016/j.polymer.2018.11.035] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
38
|
Li X, Xie L, Yang X, Nie X. Adsorption behavior and mechanism of β-cyclodextrin–styrene-based polymer for cationic dyes. RSC Adv 2018; 8:40321-40329. [PMID: 35558233 PMCID: PMC9091483 DOI: 10.1039/c8ra07709f] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 11/17/2018] [Indexed: 11/21/2022] Open
Abstract
These figures show that the cyclodextrin polymer was synthesized successfully and possessed good thermal stability.
Collapse
Affiliation(s)
- Xia Li
- The Department of Chemistry
- School of Science
- North University of China
- PR China
| | - Long Xie
- The Department of Chemistry
- School of Science
- North University of China
- PR China
| | - Xuan Yang
- The Department of Chemistry
- School of Science
- North University of China
- PR China
| | - Xiaojuan Nie
- The Department of Chemistry
- School of Science
- North University of China
- PR China
| |
Collapse
|