1
|
Hong S, Bean A, Fang Y, Lavoine N, Lucia L. Tuning the phase separation of cellulose nanocrystals with hydrolysis times: influence of effective dimensions. NANOSCALE ADVANCES 2025:d5na00069f. [PMID: 40303974 PMCID: PMC12035750 DOI: 10.1039/d5na00069f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 04/21/2025] [Indexed: 05/02/2025]
Abstract
This study attempts to quantify a relatively unexplored and very important subject: cellulose nanocrystal (CNC) bundles and their effective dimensions on phase separation and subsequent chiral resolution in CNC suspensions. Currently, there is little data discussing how effective bundle dimensions affect the onset of chiral nematic phase formation despite the fact that theory and experimental data indicate they are important factors. The effect of the extent of hydrolysis on the phase behavior of CNC suspensions was analyzed by correlating it with the critical weight concentration (w 0), which is the CNC weight corresponding to the onset of the chiral nematic phase. From Onsager theory and its extension, w 0 is primarily a function of CNC size while surface charge exerts a non-negligible effect. CNCs were produced from never-dried bleached softwood pulp under varying acid hydrolysis times to systematically alter sizes and surface charges. Concentration-dependent phase diagrams were mapped to ascertain the w 0 of the produced suspensions. The data revealed a clear decrease in w 0 when the hydrolysis time increased from 25 to 90 minutes, despite similar individual CNC size and increasing surface charges. This latter discovery following shape and size distribution indicated an increased area-equivalent (AE) diameter from extended hydrolysis, suggesting particle aggregation/bundling. This result was corroborated by elevated particle surface charges from enhanced lateral adherence between CNCs. In contrast to our findings that higher surface charge reduces the effective diameter, the observed decrease in w 0 suggests that an earlier onset of the anisotropic phase is driven by CNC bundles, which were more prevalent in samples with elevated surface charge. These observations indicate that CNC bundles play a significant role in promoting the anisotropic phase, counteracting the effect of surface charge on w 0. This work therefore provides invaluable insights into the complex interplay of CNC surface charge, shape, and size by shedding light on the importance of hydrolysis time on particle aggregation and phase behavior in CNC suspensions.
Collapse
Affiliation(s)
- Shiyao Hong
- Department of Forest Biomaterials, College of Natural Resources, North Carolina State University Raleigh NC 27695 USA
| | - Ashley Bean
- Department of Chemistry, College of Sciences, North Carolina State University Raleigh NC 27695 USA
| | | | - Nathalie Lavoine
- Department of Forest Biomaterials, College of Natural Resources, North Carolina State University Raleigh NC 27695 USA
| | - Lucian Lucia
- Department of Forest Biomaterials, College of Natural Resources, North Carolina State University Raleigh NC 27695 USA
- Department of Chemistry, College of Sciences, North Carolina State University Raleigh NC 27695 USA
| |
Collapse
|
2
|
Jia S, Yang B, Du J, Xie Y, Yu L, Zhang Y, Tao T, Tang W, Gong J. Uncovering the Recent Progress of CNC-Derived Chirality Nanomaterials: Structure and Functions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401664. [PMID: 38651220 DOI: 10.1002/smll.202401664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/10/2024] [Indexed: 04/25/2024]
Abstract
Cellulose nanocrystal (CNC), as a renewable resource, with excellent mechanical performance, low thermal expansion coefficient, and unique optical performance, is becoming a novel candidate for the development of smart material. Herein, the recent progress of CNC-based chirality nanomaterials is uncovered, mainly covering structure regulations and function design. Undergoing a simple evaporation process, the cellulose nanorods can spontaneously assemble into chiral nematic films, accompanied by a vivid structural color. Various film structure-controlling strategies, including assembly means, physical modulation, additive engineering, surface modification, geometric structure regulation, and external field optimization, are summarized in this work. The intrinsic correlation between structure and performance is emphasized. Next, the applications of CNC-based nanomaterials is systematically reviewed. Layer-by-layer stacking structure and unique optical activity endow the nanomaterials with wide applications in the mineralization, bone regeneration, and synthesis of mesoporous materials. Besides, the vivid structural color broadens the functions in anti-counterfeiting engineering, synthesis of the shape-memory and self-healing materials. Finally, the challenges for the CNC-based nanomaterials are proposed.
Collapse
Affiliation(s)
- Shengzhe Jia
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Bingbing Yang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Jing Du
- Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300072, China
| | - Yujiang Xie
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Liuyang Yu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yuan Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Tiantian Tao
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Weiwei Tang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemistry Science and Engineering, Tianjin, 300072, China
| | - Junbo Gong
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemistry Science and Engineering, Tianjin, 300072, China
| |
Collapse
|
3
|
Feng Y, Lin J, Chen X, Chai H, Tian L, Zhang J, Sun Q, Yang Y, Li Y. Hybrid chiral nanocellulose-cyanidin composite with pH and humidity response for visual inspection and real-time tracking of shrimp quality and freshness. Food Chem 2024; 446:138885. [PMID: 38447387 DOI: 10.1016/j.foodchem.2024.138885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/31/2024] [Accepted: 02/25/2024] [Indexed: 03/08/2024]
Abstract
Biobased multi-stimulation materials have received considerable attention for intelligent packaging and anti-counterfeiting applications. Cellulose nanocrystals (CNCs) and cyanidins are good material candidates for monitoring food freshness as they are eco-friendly natural substances. This work incorporated cyanidin with a CNC-hosting substrate to develop a simple, environment-friendly colorimetric device to visualize food freshness. Across the pH range of 2-13, the indicator exhibited noticeable color changes ranging from red to gray and eventually to orange. The CNC-cyanidin (CC) film exhibited a dramatic color change from blue to dark red and high sensitivity at a relative humidity of 30 %-100 %. In corresponding to the total volatile elemental nitrogen (TVB-N) level of shrimp, the indicator showed distinguishable colors at different stages of shrimp. The findings imply that the samples have substantial potential for use as an intelligent indicator for tracking shrimp freshness.
Collapse
Affiliation(s)
- Yingxuan Feng
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang Province 311300, PR China
| | - Jian Lin
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang Province 311300, PR China
| | - Xinjie Chen
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang Province 311300, PR China
| | - Hao Chai
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang Province 311300, PR China
| | - Linping Tian
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang Province 311300, PR China
| | - Jiayi Zhang
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang Province 311300, PR China
| | - Qingfeng Sun
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang Province 311300, PR China.
| | - Yushan Yang
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang Province 311300, PR China.
| | - Yingying Li
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang Province 311300, PR China.
| |
Collapse
|
4
|
Wossine SE, Thothadri G, Tufa HB, Tucho WM, Murtaza A, Edacherian A, Sayeed Ahmed GM. Isolation and Characterization of Spherical Cellulose Nanocrystals Extracted from the Higher Cellulose Yield of the Jenfokie Plant: Morphological, Structural, and Thermal Properties. Polymers (Basel) 2024; 16:1629. [PMID: 38931979 PMCID: PMC11207728 DOI: 10.3390/polym16121629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Scholars are looking for solutions to substitute hazardous substances in manufacturing nanocellulose from bio-sources to preserve the world's growing environmental consciousness. During the past decade, there has been a notable increase in the use of cellulose nanocrystals (CNCs) in modern science and nanotechnology advancements because of their abundance, biocompatibility, biodegradability, renewability, and superior mechanical properties. Spherical cellulose nanocrystals (J-CNCs) were successfully synthesized from Jenfokie micro-cellulose (J-MC) via sulfuric acid hydrolysis in this study. The yield (up to 58.6%) and specific surface area (up to 99.64 m2/g) of J-CNCs were measured. A field emission gun-scanning electron microscope (FEG-SEM) was used to assess the morphology of the J-MC and J-CNC samples. The spherical shape nanoparticles with a mean nano-size of 34 nm for J-CNCs were characterized using a transmission electron microscope (TEM). X-ray diffraction (XRD) was used to determine the crystallinity index and crystallinity size of J-CNCs, up to 98.4% and 6.13 nm, respectively. The chemical composition was determined using a Fourier transform infrared (FT-IR) spectroscope. Thermal characterization of thermogravimetry analysis (TGA), derivative thermogravimetry (DTG), and differential thermal analysis (DTA) was conducted to identify the thermal stability and cellulose pyrolysis behavior of both J-MC and J-CNC samples. The thermal analysis of J-CNC indicated lower thermal stability than J-MC. It was noted that J-CNC showed higher levels of crystallinity and larger crystallite sizes than J-MC, indicating a successful digestion and an improvement of the main crystalline structure of cellulose. The X-ray diffraction spectra and TEM images were utilized to establish that the nanocrystals' size was suitable. The novelty of this work is the synthesis of spherical nanocellulose with better properties, chosen with a rich source of cellulose from an affordable new plant (studied for the first time) by stepwise water-retted extraction, continuing from our previous study.
Collapse
Affiliation(s)
- Solomon Estifo Wossine
- Department of Mechanical Engineering, Adama Science and Technology University, Adama 1888, Ethiopia; (S.E.W.); (H.B.T.)
| | - Ganesh Thothadri
- Department of Materials Science and Engineering, Adama Science and Technology University, Adama 1888, Ethiopia
| | - Habtamu Beri Tufa
- Department of Mechanical Engineering, Adama Science and Technology University, Adama 1888, Ethiopia; (S.E.W.); (H.B.T.)
| | | | - Adil Murtaza
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory for Mechanical Behavior of Materials, School of Physics, Xi’an Jiaotong University, Xi’an 710049, China;
| | - Abhilash Edacherian
- Mechanical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia;
| | - Gulam Mohammed Sayeed Ahmed
- Center of Excellence (COE) for Advanced Manufacturing Engineering, Department of Mechanical Engineering, Adama Science and Technology University, Adama 1888, Ethiopia;
| |
Collapse
|
5
|
Hemida MH, Moustafa H, Mehanny S, Morsy M, Abd El Rahman EN, Ibrahim MM. Valorization of Eichhornia crassipes for the production of cellulose nanocrystals further investigation of plethoric biobased resource. Sci Rep 2024; 14:12387. [PMID: 38811644 PMCID: PMC11136955 DOI: 10.1038/s41598-024-62159-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 05/14/2024] [Indexed: 05/31/2024] Open
Abstract
Chemical processing is among the significant keys to tackle agro-residues utilization field, aiming to obtain value-added materials. Extraction of cellulose nanocrystals (CNCs) is an emerging route to valorize lignocellulosic wastes into high value particles. In this investigation, effect of acidic hydrolysis duration was monitored on size and morphology of obtained crystals; namely: CNCs from Nile roses fibers (NRFs) (Eichhornia crassipes). Different acidic hydrolysis duration range or different characterization techniques set this article apart from relevant literature, including our group research articles. The grinded NRFs were firstly subjected to alkaline and bleaching pretreatments, then acid hydrolysis process was carried out with varied durations ranging from 5 to 30 min. Microcrystalline cellulose (MCC) was used as reference for comparison with NRFs based samples. The extracted CNCs samples were investigated using various techniques such as scanning electron microscopy (SEM), Atomic force microscopy (AFM), Raman spectroscopy, and thermogravimetric (TGA) analysis. The figures gotten from SEM and AFM depicted that NRFs based CNCs appeared as fibril-like shapes, with reduced average size when the NRFs underwent pulping and bleaching processes. This was indicated that the elimination of hemicellulose and lignin components got achieved successfully. This outcome was proven by chemical composition measurements and TGA/DTG curves. On the other hand, AFM-3D images indicated that CNCs topology and surface roughness were mostly affected by increasing hydrolysis durations, besides smooth and homogeneous surfaces were noticed. Moreover, Raman spectra demonstrated that the particle size and crystallinity degree of NRFs based CNCs can be affected by acidic hydrolysis durations and optimum extraction time was found to be 10 min. Thermal stability of extracted CNCs-NRFs and CNCs-MCC was measured by TGA/DTG and the kinetic models were suggested to identify the kinetic parameters of the thermal decomposition of CNCs for each acid hydrolysis duration. Increasing hydrolysis duration promoted thermal stability, particularly for NRFs based CNCs. Results showcased in this article add new perspective to Nile rose nanocellulose and pave down the way to fabricate NRFs based humidity nano-sensors.
Collapse
Affiliation(s)
- Mohamed H Hemida
- Agricultural Engineering Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Hesham Moustafa
- Department of Polymer Metrology & Technology, National Institute of Standards (NIS), Tersa Street, El Haram, P.O Box 136, Giza, 12211, Egypt
- Bioanalysis Laboratory, National Institute of Standards (NIS), Tersa Street, El Haram, P.O Box 136, Giza, 12211, Egypt
| | - Sherif Mehanny
- Department of Mechanical Design and Production, Faculty of Engineering, Cairo University, Giza, Egypt
| | - Mohamed Morsy
- Building Physics and Environment Institute, Housing and Building National Research Center (HBRC), Dokki, Giza, Egypt.
- Nanotechnology Research Center (NTRC), The British University in Egypt (BUE), El Sherouk City, Suez Desert Road, Cairo, 11837, Egypt.
| | - Eid N Abd El Rahman
- Agricultural Engineering Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Mohamed M Ibrahim
- Agricultural Engineering Department, Faculty of Agriculture, Cairo University, Giza, Egypt.
| |
Collapse
|
6
|
Yang G, Hou N, Li Z, Huang K, Zhang B, Xu J, Sun J. Pressure Drop Performance of Porous Composites Based on Cotton Cellulose Nanofiber and Aramid Nanofiber for Cigarette Filter Rod. MATERIALS (BASEL, SWITZERLAND) 2023; 16:411. [PMID: 36614750 PMCID: PMC9822306 DOI: 10.3390/ma16010411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/26/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Porous composites have been widely used in the adsorption and catalysis field due to their special structure, abundant sites, and light weight. In this work, an environmentally friendly porous composite was successfully prepared via a facile freeze-drying method, in which cotton cellulose nanofiber (CCNF) was adopted as the main framework to construct the connected flue structure, and aramid nanofiber (ANF) was used as a reinforcer to enhance its thermal property. As-prepared porous materials retained a regulated inter-connected hole structure and controllable porosity after ice template evolution and possessed improved resistance to thermal collapse with the introduction of a small amount of aramid nanofiber, as evaluated and verified by FTIR, SEM, and TGA measurements. With the increased addition of cotton cellulose nanofiber and aramid nanofiber, the porous composites exhibited decreased porosity and increased pressure drop performance. For the CCNF/ANF-5 sample, the pressure drop was 1867 Pa with a porosity of 7.46 cm3/g, which best met the required pressure drop value of 1870 Pa. As-prepared porous composite with adjustable interior structure and enhanced thermal property could be a promising candidate in the tobacco field.
Collapse
Affiliation(s)
- Guangyuan Yang
- China Tobacco Hubei Industrial Limited Liability Company, Wuhan 430056, China
| | - Ning Hou
- China Tobacco Hubei Industrial Limited Liability Company, Wuhan 430056, China
| | - Zheming Li
- China Tobacco Hubei Industrial Limited Liability Company, Wuhan 430056, China
| | - Ke Huang
- China Tobacco Hubei Industrial Limited Liability Company, Wuhan 430056, China
| | - Bin Zhang
- School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Jie Xu
- School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Jiuxiao Sun
- School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| |
Collapse
|
7
|
Wang H, Shao R, Meng X, He Y, Shi Z, Guo Z, Ye C. Programmable Birefringent Patterns from Modulating the Localized Orientation of Cellulose Nanocrystals. ACS APPLIED MATERIALS & INTERFACES 2022; 14:36277-36286. [PMID: 35916232 DOI: 10.1021/acsami.2c12205] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Birefringence has been attracting broad attention due to its strong potential for applications in biomedicine and optics, such as biomedical diagnosis, colorimetric sensing, retardant, and polarization encoding. However, engineering architectures with precisely controllable birefringence remains a challenge due to the lack of effective modulation of the localized orientation. Here, by taking advantage of the inherently one-dimensional (1D) anisotropic structure of cellulose nanocrystals (CNCs), we demonstrate an approach to tune the alignment of CNCs with a well-controllable orientation at localized preciseness, which is in contrast to the previously reported unidirectional/radical orientation of CNC-based birefringent structures. The localized modulation of CNC orientation is facilitated by directing the 1D nanocrystals to align along the template periphery and the migrated three-phase contact line during the evaporation. The resultant CNC films exhibit birefringent extinction patterns under polarized light, in which versatile pattern designs can be obtained by employing templates with different shapes and template arrays with varied layouts. Due to the locally modulated orientation of CNCs, the films indicate "kaleidoscope-like" dynamically transformable designs of the birefringent patterns depending on the polarized angle, which has barely been observed previously. Furthermore, an N-nary encoding system for abundant information storage is demonstrated based on the sunlight-transparent CNC films, but with visible extinction patterns under polarized light, which is promising for encryptions, anticounterfeiting, and imaging, enriching the attractive research area of bio-based photonics.
Collapse
Affiliation(s)
- Han Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Rongrong Shao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiao Meng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yisheng He
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zhaojie Shi
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zhen Guo
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Chunhong Ye
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
8
|
Rai R, Dhar P. Biomedical engineering aspects of nanocellulose: a review. NANOTECHNOLOGY 2022; 33:362001. [PMID: 35576914 DOI: 10.1088/1361-6528/ac6fef] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
Cellulose is one of the most abundant renewable biopolymer in nature and is present as major constituent in both plant cell walls as well as synthesized by some microorganisms as extracellular products. In both the systems, cellulose self-assembles into a hierarchical ordered architecture to form micro to nano-fibrillated structures, on basis of which it is classified into various forms. Nanocellulose (NCs) exist as rod-shaped highly crystalline cellulose nanocrystals to high aspect ratio cellulose nanofibers, micro-fibrillated cellulose and bacterial cellulose (BC), depending upon the origin, structural and morphological properties. Moreover, NCs have been processed into diversified products ranging from composite films, coatings, hydrogels, aerogels, xerogels, organogels, rheological modifiers, optically active birefringent colored films using traditional-to-advanced manufacturing techniques. With such versatility in structure-property, NCs have profound application in areas of healthcare, packaging, cosmetics, energy, food, electronics, bioremediation, and biomedicine with promising commercial potential. Herein this review, we highlight the recent advancements in synthesis, fabrication, processing of NCs, with strategic chemical modification routes to tailor its properties for targeted biomedical applications. We also study the basic mechanism and models for biosynthesis of cellulose in both plant and microbial systems and understand the structural insights of NC polymorphism. The kinetics study for both enzymatic/chemical modifications of NCs and microbial growth behavior of BC under various reactor configurations are studied. The challenges associated with the commercial aspects as well as industrial scale production of pristine and functionalized NCs to meet the growing demands of market are discussed and prospective strategies to mitigate them are described. Finally, post chemical modification evaluation of biological and inherent properties of NC are important to determine their efficacy for development of various products and technologies directed for biomedical applications.
Collapse
Affiliation(s)
- Rohit Rai
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh-221005, India
| | - Prodyut Dhar
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh-221005, India
| |
Collapse
|
9
|
Bukharina D, Kim M, Han MJ, Tsukruk VV. Cellulose Nanocrystals' Assembly under Ionic Strength Variation: From High Orientation Ordering to a Random Orientation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:6363-6375. [PMID: 35559606 DOI: 10.1021/acs.langmuir.2c00293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We discuss the effect of the ionic strength and effective charge density on the final structural organization of cellulose nanocrystals (CNCs) after drying suspensions with different ionic strengths in terms of quantitative characteristics of the orientation order, rarely considered to date. We observed that increasing the ionic strength in the initial suspension results in continuous shrinking of the helical pitch length that shifts the photonic band gap to a far UV region from the visible range (from 400 to 250 nm) because of the increase in the helical twisting power from 4 to 6 μm-1 and doubling of the twisting angle between neighboring monolayers from 5.5 to 9°. As our estimation of the Coulombic interactions demonstrates, the reduction of the Debye charge screening length below a critical value of 3 nm results in the loss of the long-range helicoidal order and the transition to a disordered morphology with random packing of nanocrystals. Subsequently, very high orientation ordering with the 2D orientation factor, S, within the range 0.8-0.9, close to the theoretical limit of 1, gradually decreased to a very low value of S = 0.1-0.2, a characteristic of random organization at high ionic strength. We suggest that the loss of the chiral ordering is a result of the reduction of repulsive forces, promoting direct physical contact with the reduced contact area during Brownian motion, combined with increased repulsive Coulombic interactions of nanocrystals at nonparallel local packing. Notably, electrolyte addition enhances chiral interactions to the point where the helical twisting power is too large and the resulting nanocrystal bundles can no longer compactly pack without creating unfavorably large free volume. We propose that the Debye charge screening length in suspensions can be used as a universal parameter for CNCs under different conditions and can be used to assess expected ordering characteristics in the solid films.
Collapse
Affiliation(s)
- Daria Bukharina
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Minkyu Kim
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Moon Jong Han
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Vladimir V Tsukruk
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
10
|
Loke JJ, Hoon S, Miserez A. Cephalopod-Mimetic Tunable Photonic Coatings Assembled from Quasi-Monodispersed Reflectin Protein Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2022; 14:21436-21452. [PMID: 35476418 DOI: 10.1021/acsami.2c01999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The remarkable dynamic camouflage ability of cephalopods arises from precisely orchestrated structural changes within their chromatophores and iridophores photonic cells. This mesmerizing color display remains unmatched in synthetic coatings and is regulated by swelling/deswelling of reflectin protein nanoparticles, which alters platelet dimensions in iridophores to control photonic patterns according to Bragg's law. Toward mimicking the photonic response of squid's skin, reflectin proteins from Sepioteuthis lessioniana were sequenced, recombinantly expressed, and self-assembled into spherical nanoparticles by conjugating reflectin B1 with a click chemistry ligand. These quasi-monodisperse nanoparticles can be tuned to any desired size in the 170-1000 nm range. Using Langmuir-Schaefer and drop-cast deposition methods, ligand-conjugated reflectin B1 nanoparticles were immobilized onto azide-functionalized substrates via click chemistry to produce monolayer amorphous photonic structures with tunable structural colors based on average particle size, paving the way for the fabrication of eco-friendly, bioinspired color-changing coatings that mimic cephalopods' dynamic camouflage.
Collapse
Affiliation(s)
- Jun Jie Loke
- Centre for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University (NTU), Singapore 639798, Singapore
| | - Shawn Hoon
- Molecular Engineering Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science Technology and Research (A*STAR), Singapore 138673, Singapore
| | - Ali Miserez
- Centre for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University (NTU), Singapore 639798, Singapore
- School of Biological Sciences, Nanyang Technological University (NTU), Singapore 637551, Singapore
| |
Collapse
|
11
|
Krichen F, Walha S, Abdelmouleh M. Hirshfeld surface analysis of the intermolecular interaction networks in cellulose Iα and Iβ. Carbohydr Res 2022; 518:108600. [DOI: 10.1016/j.carres.2022.108600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/21/2022] [Accepted: 05/25/2022] [Indexed: 11/29/2022]
|
12
|
Hu Y, Wei B, Yang D, Ma D, Huang S. Chameleon-Inspired Brilliant and Sensitive Mechano-Chromic Photonic Skins for Self-Reporting the Strains of Earthworms. ACS APPLIED MATERIALS & INTERFACES 2022; 14:11672-11680. [PMID: 35226808 DOI: 10.1021/acsami.2c00561] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The skins of chameleons have attracted growing interest because they have sensitive mechano-chromic properties and bright colors due to the large surface-to-surface distances (Ds-s) between neighboring particles and contrast of the refractive index (Δn), respectively. Inspired by these, artificial mechano-chromic photonic skins (MPSs) mimicking those of chameleons were fabricated by the large Δn and Ds-s. The fabrication is considerably simple and efficient based on the self-assembly strategy using commercial chemicals and materials. The reflectance of MPSs depends on the value of Δn, which can be greatly increased to 70% with a Δn of 0.035, leading to their brilliant colors. Because of the large Ds-s, the MPSs possess outstanding mechano-chromic performances, including a large maximal (Δλ = 205 nm) and effective (Δλe = 184 nm) tuning range of the reflection wavelength, high sensitivity (368), fast responsiveness (2.2 nm/ms), good stabilities (>1 year), and reversibility (>100 times). Based on these advantages, MPSs have been used for self-reporting the strain of earthworms by outputting diverse colors during the peristaltic process, indicating the great potential of the MPSs as visual sensors and optical coatings.
Collapse
Affiliation(s)
- Yang Hu
- School of Materials and Energy, Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Boru Wei
- School of Materials and Energy, Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Dongpeng Yang
- School of Materials and Energy, Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Dekun Ma
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing 312000, PR China
| | - Shaoming Huang
- School of Materials and Energy, Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Guangdong University of Technology, Guangzhou 510006, P. R. China
| |
Collapse
|
13
|
Qin J, Wang Z, Hu J, Yuan Y, Liu P, Cheng L, Kong Z, Liu K, Yan S, Zhang J. Distinct liquid crystal self-assembly behavior of cellulose nanocrystals functionalized with ionic liquids. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127790] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
14
|
Kim M, Pierce K, Krecker M, Bukharina D, Adstedt K, Nepal D, Bunning T, Tsukruk VV. Monolithic Chiral Nematic Organization of Cellulose Nanocrystals under Capillary Confinement. ACS NANO 2021; 15:19418-19429. [PMID: 34874720 DOI: 10.1021/acsnano.1c05988] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We demonstrate bioenabled crack-free chiral nematic films prepared via a unidirectional flow of cellulose nanocrystals (CNCs) in the capillary confinement. To facilitate the uniform long-range nanocrystal organization during drying, we utilized tunicate-inspired hydrogen-bonding-rich 3,4,5-trihydroxyphenethylamine hydrochloride (TOPA) for physical cross-linking of nanocrystals with enhanced hydrogen bonding and polyethylene glycol (PEG) as a relaxer of internal stresses in the vicinity of the capillary surface. The CNC/TOPA/PEG film is organized as a left-handed chiral structure parallel to flat walls, and the inner volume of the films displayed transitional herringbone organization across the interfacial region. The resulting thin films also exhibit high mechanical performance compared to brittle films with multiple cracks commonly observed for capillary-formed pure CNC films. The chiral nematic ordering of modified TOPA-PEG-CNC material propagates through the entire thickness of robust monolithic films and across centimeter-sized surface areas, facilitating consistent, vivid iridescence, and enhanced circular polarization. The best performance that prevents the cracks was achieved for a CNC/TOPA/PEG film with a minimal, 3% amount of TOPA. Overall, we suggest that intercalation of small highly adhesive molecules to cellulose nanocrystal-polymer matrices can facilitate uniform flow of liquid crystal phase and drying inside the capillary, resulting in improvement of the ultimate tensile strength and toughness (77% and 100% increase, respectively) with controlled uniform optical reflection and enhanced circular polarization unachievable during regular drying conditions.
Collapse
Affiliation(s)
- Minkyu Kim
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Kellina Pierce
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Michelle Krecker
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Daria Bukharina
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Katarina Adstedt
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Dhriti Nepal
- Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio 45433, United States
| | - Timothy Bunning
- Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio 45433, United States
| | - Vladimir V Tsukruk
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
15
|
Shao R, Meng X, Shi Z, Zhong J, Cai Z, Hu J, Wang X, Chen G, Gao S, Song Y, Ye C. Marangoni Flow Manipulated Concentric Assembly of Cellulose Nanocrystals. SMALL METHODS 2021; 5:e2100690. [PMID: 34927964 DOI: 10.1002/smtd.202100690] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/16/2021] [Indexed: 06/14/2023]
Abstract
Tunable assembly of cellulose nanocrystals (CNCs) is important for a variety of emerging applications in optics, sensing, and security. Most exploited assembly and optical property of CNCs are cholesteric assembly and corresponding circular dichroism. However, it still remains challenge to obtain homogenous and high-resolution cholesteric assembly. Distinct assembly and optical property of CNCs are highly demanded for advanced photonic materials with novel functions. Herein, a facile and programmable approach for assembling CNCs into a novel concentric alignment using capillary flow and Marangoni effect, which is in strike contrast to conventional cholesteric assembly, is demonstrated. The concentric assembly, as quantitatively evidenced by polarized synchrotron radiation Fourier transform infrared imaging, demonstrates Maltese cross optical pattern with good uniformity and high resolution. Furthermore, this Maltese cross can be readily regulated to "on/off" states by temperature. By combining with 3D inkjet technology, a functional binary system composed of "on"/"off" CNCs optical patterns with high spatial resolution, fast printing speed, good repeatability, and precisely controllable optical property is established for information encryption and decryption. This concentric assembly of CNCs and corresponding tunable optical property emerge as a promising candidate for information security, anticounterfeiting technology, and advanced optics.
Collapse
Affiliation(s)
- Rongrong Shao
- School of Physical Science and Technology, Shanghai Tech University, Shanghai, 201210, China
| | - Xiao Meng
- School of Physical Science and Technology, Shanghai Tech University, Shanghai, 201210, China
| | - Zhaojie Shi
- School of Physical Science and Technology, Shanghai Tech University, Shanghai, 201210, China
| | - Jiajia Zhong
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Zheren Cai
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junhao Hu
- School of Information Science and Technology, Shanghai Tech University, Shanghai, 201210, China
| | - Xiao Wang
- School of Physical Science and Technology, Shanghai Tech University, Shanghai, 201210, China
| | - Gang Chen
- School of Physical Science and Technology, Shanghai Tech University, Shanghai, 201210, China
| | - Shenghua Gao
- School of Information Science and Technology, Shanghai Tech University, Shanghai, 201210, China
| | - Yanlin Song
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunhong Ye
- School of Physical Science and Technology, Shanghai Tech University, Shanghai, 201210, China
| |
Collapse
|
16
|
Kang S, Li Y, Bukharina D, Kim M, Lee H, Buxton ML, Han MJ, Nepal D, Bunning TJ, Tsukruk VV. Bio-Organic Chiral Nematic Materials with Adaptive Light Emission and On-Demand Handedness. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2103329. [PMID: 34331313 DOI: 10.1002/adma.202103329] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/28/2021] [Indexed: 06/13/2023]
Abstract
Real-time active control of the handedness of circularly polarized light emission requires sophisticated manufacturing and structural reconfigurations of inorganic optical components that can rarely be achieved in traditional passive optical structures. Here, robust and flexible emissive optically-doped biophotonic materials that facilitate the dynamic optical activity are reported. These optically active bio-enabled materials with a chiral nematic-like organization of cellulose nanocrystals with intercalated organic dye generated strong circularly polarized photoluminescence with a high asymmetric factor. Reversible phase-shifting of the photochromic molecules intercalated into chiral nematic organization enables alternating circularly polarized light emission with on-demand handedness. Real-time alternating handedness can be triggered by either remote light illumination or changes in the acidic environment. This unique dynamic chiro-optical behavior presents an efficient way to design emissive bio-derived materials for dynamic programmable active photonic materials for optical communication, optical coding, visual protection, and visual adaptation.
Collapse
Affiliation(s)
- Saewon Kang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Yingying Li
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Daria Bukharina
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Minkyu Kim
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Hansol Lee
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Madeline L Buxton
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Moon Jong Han
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Dhriti Nepal
- Air Force Research Laboratory, Wright-Patterson Air Force Base, OH, 45433, USA
| | - Timothy J Bunning
- Air Force Research Laboratory, Wright-Patterson Air Force Base, OH, 45433, USA
| | - Vladimir V Tsukruk
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
17
|
de Vries L, Guevara-Rozo S, Cho M, Liu LY, Renneckar S, Mansfield SD. Tailoring renewable materials via plant biotechnology. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:167. [PMID: 34353358 PMCID: PMC8344217 DOI: 10.1186/s13068-021-02010-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/06/2021] [Indexed: 05/03/2023]
Abstract
Plants inherently display a rich diversity in cell wall chemistry, as they synthesize an array of polysaccharides along with lignin, a polyphenolic that can vary dramatically in subunit composition and interunit linkage complexity. These same cell wall chemical constituents play essential roles in our society, having been isolated by a variety of evolving industrial processes and employed in the production of an array of commodity products to which humans are reliant. However, these polymers are inherently synthesized and intricately packaged into complex structures that facilitate plant survival and adaptation to local biogeoclimatic regions and stresses, not for ease of deconstruction and commercial product development. Herein, we describe evolving techniques and strategies for altering the metabolic pathways related to plant cell wall biosynthesis, and highlight the resulting impact on chemistry, architecture, and polymer interactions. Furthermore, this review illustrates how these unique targeted cell wall modifications could significantly extend the number, diversity, and value of products generated in existing and emerging biorefineries. These modifications can further target the ability for processing of engineered wood into advanced high performance materials. In doing so, we attempt to illuminate the complex connection on how polymer chemistry and structure can be tailored to advance renewable material applications, using all the chemical constituents of plant-derived biopolymers, including pectins, hemicelluloses, cellulose, and lignins.
Collapse
Affiliation(s)
- Lisanne de Vries
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- US Department of Energy (DOE) Great Lakes Bioenergy Research Center, the Wisconsin Energy Institute, University of Wisconsin - Madison, Madison, WI , 53726, USA
| | - Sydne Guevara-Rozo
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - MiJung Cho
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Li-Yang Liu
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Scott Renneckar
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Shawn D Mansfield
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
- US Department of Energy (DOE) Great Lakes Bioenergy Research Center, the Wisconsin Energy Institute, University of Wisconsin - Madison, Madison, WI , 53726, USA.
| |
Collapse
|
18
|
Cao S, Rathi P, Wu X, Ghim D, Jun YS, Singamaneni S. Cellulose Nanomaterials in Interfacial Evaporators for Desalination: A "Natural" Choice. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2000922. [PMID: 32537817 DOI: 10.1002/adma.202000922] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/16/2020] [Accepted: 03/20/2020] [Indexed: 05/18/2023]
Abstract
Herein, the recent advances in realizing highly efficient cellulose-based solar evaporators for alleviating the global water crisis are summarized. Fresh water scarcity is one of the most threatening issues for sustainable development. Solar steam generation, which harnesses the abundant sunlight, has been recognized as a sustainable approach to harvest fresh water. In contrast to synthetic polymeric materials that can pose serious negative environmental impacts, cellulose-based materials, owing to their biocompatibility, renewability, and sustainability, are highly attractive for realizing solar steam generators. The molecular and macromolecular features of cellulose and the physicochemical properties of extracted cellulose nanoparticles (cellulose nanocrystals and cellulose nanofibrils (CNF)) and natural cellulose materials (wood and bacterial nanocellulose (BNC)) that make them attractive as supporting substrate materials in solar steam generators are briefly discussed. Recent progress in designing highly efficient cellulose-based solar evaporators, including utilizing extracted cellulose nanoparticles via bottom-up assembly CNF, natural cellulose materials with intrinsic hierarchical structure (wood and BNC), and commercial planar cellulose substrates (air-laid paper, cellulose paper, and cotton fabric) is reviewed. The outstanding challenges that need to be addressed for these materials and devices to be utilized in the real-world and in overcoming global water crisis are also briefly highlighted.
Collapse
Affiliation(s)
- Sisi Cao
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, St Louis, MO, 63130, USA
| | - Priya Rathi
- Department of Chemistry, Washington University in St. Louis, St Louis, MO, 63130, USA
| | - Xuanhao Wu
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Deoukchen Ghim
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Young-Shin Jun
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Srikanth Singamaneni
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, St Louis, MO, 63130, USA
| |
Collapse
|
19
|
Zhao D, Zhu Y, Cheng W, Chen W, Wu Y, Yu H. Cellulose-Based Flexible Functional Materials for Emerging Intelligent Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2000619. [PMID: 32310313 DOI: 10.1002/adma.202000619] [Citation(s) in RCA: 219] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 05/19/2023]
Abstract
There is currently enormous and growing demand for flexible electronics for personalized mobile equipment, human-machine interface units, wearable medical-healthcare systems, and bionic intelligent robots. Cellulose is a well-known natural biopolymer that has multiple advantages including low cost, renewability, easy processability, and biodegradability, as well as appealing mechanical performance, dielectricity, piezoelectricity, and convertibility. Because of its multiple merits, cellulose is frequently used as a substrate, binder, dielectric layer, gel electrolyte, and derived carbon material for flexible electronic devices. Leveraging the advantages of cellulose to design advanced functional materials will have a significant impact on portable intelligent electronics. Herein, the unique molecular structure and nanostructures (nanocrystals, nanofibers, nanosheets, etc.) of cellulose are briefly introduced, the structure-property-application relationships of cellulosic materials summarized, and the processing technologies for fabricating cellulose-based flexible electronics considered. The focus then turns to the recent advances of cellulose-based functional materials toward emerging intelligent electronic devices including flexible sensors, optoelectronic devices, field-effect transistors, nanogenerators, electrochemical energy storage devices, biomimetic electronic skins, and biological detection devices. Finally, an outlook of the potential challenges and future prospects for developing cellulose-based wearable devices and bioelectronic systems is presented.
Collapse
Affiliation(s)
- Dawei Zhao
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, P. R. China
- Institute of Industrial Chemistry and Energy Technology, Shenyang University of Chemical Technology, Shenyang, 110142, P. R. China
| | - Ying Zhu
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Wanke Cheng
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Wenshuai Chen
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Yiqiang Wu
- College of Materials Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, P. R. China
| | - Haipeng Yu
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, P. R. China
| |
Collapse
|
20
|
Casado U, Mucci VL, Aranguren MI. Cellulose nanocrystals suspensions: Liquid crystal anisotropy, rheology and films iridescence. Carbohydr Polym 2021; 261:117848. [PMID: 33766344 DOI: 10.1016/j.carbpol.2021.117848] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/05/2021] [Accepted: 02/19/2021] [Indexed: 01/06/2023]
Abstract
The properties of aqueous suspensions of cellulose nanocrystals (CNC) and their casted films are revised. The bio-nanoparticles are briefly introduced, including modifications of the crystals and the suspending media. The formation of CNC-derived liquid crystals (LC) and their resulting rheological behavior are presented. The effects of different variables are addressed: CNC aspect ratio, surface chemistry, concentration, time required for the appearance of an anisotropic phase and addition of other components to the suspension media. The changes on the structure induced by alignment, and by conditions of the drying process are also reported. The optical properties of the films are considered, and the effect of the above variables on the final transparency, iridescence and overall optical response of these bio-inspired photonic materials. Control of the reviewed variables is needed to achieve reliable materials in applications such as sensors, smart inks and papers, transparent flexible supports for electronics, decorative coatings and films.
Collapse
Affiliation(s)
- Ulises Casado
- Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA), Universidad Nacional de Mar del Plata (UNMdP) - Consejo Nacional de Investigaciones en Ciencia y tecnología (CONICET), Facultad de Ingeniería, Av. Juan B Justo 4302, (7600), Mar del Plata, Argentina
| | - Verónica L Mucci
- Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA), Universidad Nacional de Mar del Plata (UNMdP) - Consejo Nacional de Investigaciones en Ciencia y tecnología (CONICET), Facultad de Ingeniería, Av. Juan B Justo 4302, (7600), Mar del Plata, Argentina
| | - Mirta I Aranguren
- Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA), Universidad Nacional de Mar del Plata (UNMdP) - Consejo Nacional de Investigaciones en Ciencia y tecnología (CONICET), Facultad de Ingeniería, Av. Juan B Justo 4302, (7600), Mar del Plata, Argentina.
| |
Collapse
|
21
|
Zlenko DV, Vtyurina DN, Usachev SV, Skoblin AA, Mikhaleva MG, Politenkova GG, Nikolsky SN, Stovbun SV. On the orientation of the chains in the mercerized cellulose. Sci Rep 2021; 11:8765. [PMID: 33888779 PMCID: PMC8062695 DOI: 10.1038/s41598-021-88040-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/01/2021] [Indexed: 02/02/2023] Open
Abstract
The cold alkaline treatment or mercerization of cellulose is widely used in industry to enrich the cellulose raw with high-molecular-weight [Formula: see text]-cellulose. Washing out of hemicelluloses by alkalies is accompanied by the rearrangement of the cellulose chains' packing, well known as a transition between cellulose I and cellulose II. Cellulose II can also be produced by the precipitation of the cellulose solutions (regeneration). The currently accepted theory implies that in cellulose II, both mercerized and regenerated, the macromolecules are arranged antiparallelly. However, forming such a structure in the course of the mercerization seems to be significantly hindered, while it seems to be quite possible in the regeneration process. In this work, we discuss the sticking points in the theory on the antiparallel structure of mercerized cellulose from a theoretical point of view summarizing all of the available experimental data in the field.
Collapse
Affiliation(s)
- Dmitry V Zlenko
- N.N. Semenov Federal Research Center for Chemical Physics RAS, Moscow, Russia.
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia.
| | - Daria N Vtyurina
- N.N. Semenov Federal Research Center for Chemical Physics RAS, Moscow, Russia
| | - Sergey V Usachev
- N.N. Semenov Federal Research Center for Chemical Physics RAS, Moscow, Russia
| | - Aleksey A Skoblin
- N.N. Semenov Federal Research Center for Chemical Physics RAS, Moscow, Russia
| | - Mariya G Mikhaleva
- N.N. Semenov Federal Research Center for Chemical Physics RAS, Moscow, Russia
| | | | - Sergey N Nikolsky
- N.N. Semenov Federal Research Center for Chemical Physics RAS, Moscow, Russia
| | - Sergey V Stovbun
- N.N. Semenov Federal Research Center for Chemical Physics RAS, Moscow, Russia
| |
Collapse
|
22
|
He X, Lu W, Sun C, Khalesi H, Mata A, Andaleeb R, Fang Y. Cellulose and cellulose derivatives: Different colloidal states and food-related applications. Carbohydr Polym 2020; 255:117334. [PMID: 33436177 DOI: 10.1016/j.carbpol.2020.117334] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 12/30/2022]
Abstract
Development of new sources and isolation processes has recently enhanced the production of cellulose in many different colloidal states. Even though cellulose is widely used as a functional ingredient in the food industry, the relationship between the colloidal states of cellulose and its applications is mostly unknown. This review covers the recent progress on illustrating various colloidal states of cellulose and the influencing factors with special emphasis on the correlation between the colloidal states of cellulose and its applications in food industry. The associated unique colloidal states of cellulose like high aspect ratio, crystalline structure, surface charge, and wettability not only promote the stability of colloidal systems, but also help improve the nutritional aspects of cellulose by facilitating its interactions with digestive system. Further studies are required for the rational control and improvement of the colloidal states of cellulose and producing food systems with enhanced functional and nutritional properties.
Collapse
Affiliation(s)
- Xiangxiang He
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wei Lu
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Cuixia Sun
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hoda Khalesi
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Analucia Mata
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Rani Andaleeb
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yapeng Fang
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
23
|
Xiong R, Zhang X, Krecker M, Kang S, Smith MJ, Tsukruk VV. Large and Emissive Crystals from Carbon Quantum Dots onto Interfacial Organized Templates. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Rui Xiong
- School of Materials Science and Engineering Georgia Institute of Technology Atlanta GA 30332-0245 USA
| | - Xiaofang Zhang
- School of Materials Science and Engineering Georgia Institute of Technology Atlanta GA 30332-0245 USA
| | - Michelle Krecker
- School of Materials Science and Engineering Georgia Institute of Technology Atlanta GA 30332-0245 USA
| | - Saewon Kang
- School of Materials Science and Engineering Georgia Institute of Technology Atlanta GA 30332-0245 USA
| | - Marcus J. Smith
- School of Materials Science and Engineering Georgia Institute of Technology Atlanta GA 30332-0245 USA
| | - Vladimir V. Tsukruk
- School of Materials Science and Engineering Georgia Institute of Technology Atlanta GA 30332-0245 USA
| |
Collapse
|
24
|
Facchine EG, Jin SA, Spontak RJ, Khan SA, Rojas OJ. Quantitative Calorimetric Studies of the Chiral Nematic Mesophase in Aqueous Cellulose Nanocrystal Suspensions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:10830-10837. [PMID: 32808787 DOI: 10.1021/acs.langmuir.0c01871] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Aqueous suspensions of cellulose nanocrystals (CNCs) can spontaneously form a chiral nematic mesophase at a critical concentration (c*). Unfortunately, no current analytical technique permits rapid detection of c*. Herein, we introduce a facile and accurate approach to assess c* rapidly (<2 h) from a small sample volume and compare our results with those obtained by conventional methods. Our strategy employs isothermal titration calorimetry (ITC) to measure the heat associated with interactions in the suspension, which can identify the onset of mesophase formation as the heat signature is sensitive to the suspension viscosity and thus capable of detecting small changes in the suspension environment. We measure c* for CNC samples differing in surface charge and aspect ratio, and find that both lower aspect ratios and higher surface charges increase c*. Our ITC results reveal the role of CNC interactions prior to the visual observation of mesophase formation and elucidate mesomorphic effects related to nanocrystals and their suspensions.
Collapse
Affiliation(s)
- Emily G Facchine
- Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Soo-Ah Jin
- Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Richard J Spontak
- Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
- Department of Materials Science & Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Saad A Khan
- Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Orlando J Rojas
- Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
- Department of Byproducts and Biosystems, School of Chemical Engineering, Aalto University, Aalto, Espoo FI-00076, Finland
- Bioproducts Institute, Departments of Chemical and Biological Engineering, Chemistry and Wood Science, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
25
|
Xiong R, Zhang X, Krecker M, Kang S, Smith MJ, Tsukruk VV. Large and Emissive Crystals from Carbon Quantum Dots onto Interfacial Organized Templates. Angew Chem Int Ed Engl 2020; 59:20167-20173. [DOI: 10.1002/anie.202008748] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Indexed: 01/21/2023]
Affiliation(s)
- Rui Xiong
- School of Materials Science and Engineering Georgia Institute of Technology Atlanta GA 30332-0245 USA
| | - Xiaofang Zhang
- School of Materials Science and Engineering Georgia Institute of Technology Atlanta GA 30332-0245 USA
| | - Michelle Krecker
- School of Materials Science and Engineering Georgia Institute of Technology Atlanta GA 30332-0245 USA
| | - Saewon Kang
- School of Materials Science and Engineering Georgia Institute of Technology Atlanta GA 30332-0245 USA
| | - Marcus J. Smith
- School of Materials Science and Engineering Georgia Institute of Technology Atlanta GA 30332-0245 USA
| | - Vladimir V. Tsukruk
- School of Materials Science and Engineering Georgia Institute of Technology Atlanta GA 30332-0245 USA
| |
Collapse
|
26
|
Prince E, Narayanan P, Chekini M, Pace-Tonna C, Roberts MG, Zhulina E, Kumacheva E. Solvent-Mediated Isolation of Polymer-Grafted Nanoparticles. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Elisabeth Prince
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
| | - Pournima Narayanan
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
| | - Mahshid Chekini
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
| | - Carleigh Pace-Tonna
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
| | - Megan G. Roberts
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
| | - Ekaterina Zhulina
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, St. Petersburg 199004, Russia
| | - Eugenia Kumacheva
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 4 Taddle Creek Road, Toronto, Ontario M5S 3H6, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| |
Collapse
|
27
|
Usachev SV, Zlenko DV, Nagornova IV, Koverzanova EV, G. Mikhaleva M, Vedenkin AS, Vtyurina DN, Skoblin AA, Nikolsky SN, Politenkova GG, Stovbun SV. Structure and properties of helical fibers spun from cellulose solutions in [Bmim]Cl. Carbohydr Polym 2020; 235:115866. [DOI: 10.1016/j.carbpol.2020.115866] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/27/2019] [Accepted: 01/12/2020] [Indexed: 11/30/2022]
|
28
|
Xiong R, Luan J, Kang S, Ye C, Singamaneni S, Tsukruk VV. Biopolymeric photonic structures: design, fabrication, and emerging applications. Chem Soc Rev 2020; 49:983-1031. [PMID: 31960001 DOI: 10.1039/c8cs01007b] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Biological photonic structures can precisely control light propagation, scattering, and emission via hierarchical structures and diverse chemistry, enabling biophotonic applications for transparency, camouflaging, protection, mimicking and signaling. Corresponding natural polymers are promising building blocks for constructing synthetic multifunctional photonic structures owing to their renewability, biocompatibility, mechanical robustness, ambient processing conditions, and diverse surface chemistry. In this review, we provide a summary of the light phenomena in biophotonic structures found in nature, the selection of corresponding biopolymers for synthetic photonic structures, the fabrication strategies for flexible photonics, and corresponding emerging photonic-related applications. We introduce various photonic structures, including multi-layered, opal, and chiral structures, as well as photonic networks in contrast to traditionally considered light absorption and structural photonics. Next, we summarize the bottom-up and top-down fabrication approaches and physical properties of organized biopolymers and highlight the advantages of biopolymers as building blocks for realizing unique bioenabled photonic structures. Furthermore, we consider the integration of synthetic optically active nanocomponents into organized hierarchical biopolymer frameworks for added optical functionalities, such as enhanced iridescence and chiral photoluminescence. Finally, we present an outlook on current trends in biophotonic materials design and fabrication, including current issues, critical needs, as well as promising emerging photonic applications.
Collapse
Affiliation(s)
- Rui Xiong
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Sun C, Zhu D, Jia H, Lei K, Zheng Z, Wang X. Humidity and Heat Dual Response Cellulose Nanocrystals/Poly( N-Isopropylacrylamide) Composite Films with Cyclic Performance. ACS APPLIED MATERIALS & INTERFACES 2019; 11:39192-39200. [PMID: 31564097 DOI: 10.1021/acsami.9b14201] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
It has been widely reported that cellulose nanocrystals (CNCs) demonstrate a special structural color, which stems from chiral nematic domains. Herein, the humidity and heat dual response nanocomposite films with multilayered helical structure were prepared by self-assembling of CNCs and hydrazone groups modified poly(N-isopropylacrylamide) (PNIPAM) copolymers. Furthermore, glutaraldehyde was involved to act as a chemical linker to improve cyclic stability by forming acylhydrazone bonds. The structural color of the films could be easily regulated by humidity, heat, or the content of modified PNIPAM copolymers. The absorption of water in higher humidity led to volume expansion of the resin, resulting in a red shift for up to 145 nm. In contrast, the resin shrank under the temperature above the lower critical solution temperature of PNIPAM, leading to a blue shift for up to 87 nm. It was notable that the change of color can be easily captured by the naked eyes. Moreover, the films exhibited excellent stability and cyclicity in response to either vapor or liquid water due to the chemical linking between CNCs and resins. The as-prepared CNCs/PNIPAM nanocomposite films with humidity or heat responsibilities are promising in stimuli-responsive sensors, printing industry, surface decorations, and so forth.
Collapse
Affiliation(s)
- Chengyuan Sun
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , Dongchuan Road No. 800 , Shanghai 200240 , China
| | - Dandan Zhu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , Dongchuan Road No. 800 , Shanghai 200240 , China
| | - Haiyan Jia
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , Dongchuan Road No. 800 , Shanghai 200240 , China
| | - Kun Lei
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , Dongchuan Road No. 800 , Shanghai 200240 , China
| | - Zhen Zheng
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , Dongchuan Road No. 800 , Shanghai 200240 , China
| | - Xinling Wang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , Dongchuan Road No. 800 , Shanghai 200240 , China
| |
Collapse
|
30
|
Gurina D, Surov O, Voronova M, Zakharov A, Kiselev M. Water Effects on Molecular Adsorption of Poly(N-vinyl-2-pyrrolidone) on Cellulose Nanocrystals Surfaces: Molecular Dynamics Simulations. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E2155. [PMID: 31277517 PMCID: PMC6651292 DOI: 10.3390/ma12132155] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/25/2019] [Accepted: 07/03/2019] [Indexed: 12/31/2022]
Abstract
Models of interaction between a poly(N-vinyl-2-pyrrolidone) macromolecule and a fragment of Iβ-cellulose were built in a vacuum and water environment. The models were made to interpret the mechanism of interaction of the polymer and cellulose nanocrystals by the classical molecular dynamics method. The structural behavior of a poly(N-vinyl-2-pyrrolidone) macromolecule in water has been studied in terms of the radius of gyration, atom-atom radial distribution functions and number of hydrogen bonds. It was found that the polymer has a high affinity with the solvent and each monomer unit has on average 0.5 hydrogen bonds. The structural and energy characteristics of the polymer adsorption were investigated at different initial positions of the poly(N-vinyl-2-pyrrolidone) macromolecule relative to the cellulose fragment. It was observed that the polymer macromolecule was mainly adsorbed on the cellulose fragment in the globular form. Moreover, in the solvent the interaction of poly(N-vinyl-2-pyrrolidone) with the cellulose hydrophobic surface was stronger than that with the hydrophilic one. This study will show that the presence of water makes the interaction between the polymer and cellulose weaker than in a vacuum, and the polymer and cellulose mainly interact through their solvation shells.
Collapse
Affiliation(s)
- Darya Gurina
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 Akademicheskaya St., Ivanovo 153045, Russia.
| | - Oleg Surov
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 Akademicheskaya St., Ivanovo 153045, Russia.
| | - Marina Voronova
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 Akademicheskaya St., Ivanovo 153045, Russia
| | - Anatoly Zakharov
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 Akademicheskaya St., Ivanovo 153045, Russia
| | - Mikhail Kiselev
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 Akademicheskaya St., Ivanovo 153045, Russia
| |
Collapse
|
31
|
Torlopov MA, Martakov IS, Mikhaylov VI, Legki PV, Golubev YA, Krivoshapkina EF, Tracey C, Sitnikov PA, Udoratina EV. Manipulating the colloidal properties of (non-)sulfated cellulose nanocrystals via stepwise surface cyanoethylation/carboxylation. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.03.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
32
|
Zlenko DV, Nikolsky SN, Vedenkin AS, Politenkova GG, Skoblin AA, Melnikov VP, Michaleva MM, Stovbun SV. Twisting of Fibers Balancing the Gel⁻Sol Transition in Cellulose Aqueous Suspensions. Polymers (Basel) 2019; 11:polym11050873. [PMID: 31086088 PMCID: PMC6571874 DOI: 10.3390/polym11050873] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/08/2019] [Accepted: 04/28/2019] [Indexed: 11/16/2022] Open
Abstract
Cellulose hydrogels and films are advantageous materials that are applied in modern industry and medicine. Cellulose hydrogels have a stable scaffold and never form films upon drying, while viscous cellulose hydrosols are liquids that could be used for film production. So, stabilizing either a gel or sol state in cellulose suspensions is a worthwhile challenge, significant for the practical applications. However, there is no theory describing the cellulose fibers' behavior and processes underlying cellulose-gel-scaffold stabilizing. In this work, we provide a phenomenological mechanism explaining the transition between the stable-gel and shapeless-sol states in a cellulose suspension. We suppose that cellulose macromolecules and nanofibrils under strong dispersing treatment (such as sonication) partially untwist and dissociate, and then reassemble in a 3D scaffold having the individual elements twisted in the nodes. The latter leads to an exponential increase in friction forces between the fibers and to the corresponding fastening of the scaffold. We confirm our theory by the data on the circular dichroism of the cellulose suspensions, as well as by the direct scanning electron microscope (SEM) observations and theoretical assessments.
Collapse
Affiliation(s)
- Dmitry V Zlenko
- Faculty of Biology, M.V. Lomonosov Moscow State University, Lenin Hills 1/12, 119192 Moscow, Russia.
- N.N. Semenov Institute of Chemical Physics, RAS. Kosygina 4, 119991 Moscow, Russia.
| | - Sergey N Nikolsky
- N.N. Semenov Institute of Chemical Physics, RAS. Kosygina 4, 119991 Moscow, Russia.
| | - Alexander S Vedenkin
- N.N. Semenov Institute of Chemical Physics, RAS. Kosygina 4, 119991 Moscow, Russia.
| | - Galina G Politenkova
- N.N. Semenov Institute of Chemical Physics, RAS. Kosygina 4, 119991 Moscow, Russia.
| | - Aleksey A Skoblin
- N.N. Semenov Institute of Chemical Physics, RAS. Kosygina 4, 119991 Moscow, Russia.
| | - Valery P Melnikov
- N.N. Semenov Institute of Chemical Physics, RAS. Kosygina 4, 119991 Moscow, Russia.
| | - Marya M Michaleva
- N.N. Semenov Institute of Chemical Physics, RAS. Kosygina 4, 119991 Moscow, Russia.
| | - Sergey V Stovbun
- N.N. Semenov Institute of Chemical Physics, RAS. Kosygina 4, 119991 Moscow, Russia.
| |
Collapse
|
33
|
Cellulose nanocrystals reinforced κ-carrageenan based UV resistant transparent bionanocomposite films for sustainable packaging applications. Carbohydr Polym 2019; 211:181-194. [DOI: 10.1016/j.carbpol.2019.01.114] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/29/2019] [Accepted: 01/31/2019] [Indexed: 11/22/2022]
|
34
|
Grebinyk A, Prylutska S, Grebinyk S, Prylutskyy Y, Ritter U, Matyshevska O, Dandekar T, Frohme M. Complexation with C 60 Fullerene Increases Doxorubicin Efficiency against Leukemic Cells In Vitro. NANOSCALE RESEARCH LETTERS 2019; 14:61. [PMID: 30788638 PMCID: PMC6382919 DOI: 10.1186/s11671-019-2894-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 02/06/2019] [Indexed: 05/06/2023]
Abstract
Conventional anticancer chemotherapy is limited because of severe side effects as well as a quickly evolving multidrug resistance of the tumor cells. To address this problem, we have explored a C60 fullerene-based nanosized system as a carrier for anticancer drugs for an optimized drug delivery to leukemic cells.Here, we studied the physicochemical properties and anticancer activity of C60 fullerene noncovalent complexes with the commonly used anticancer drug doxorubicin. C60-Doxorubicin complexes in a ratio 1:1 and 2:1 were characterized with UV/Vis spectrometry, dynamic light scattering, and high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). The obtained analytical data indicated that the 140-nm complexes were stable and could be used for biological applications. In leukemic cell lines (CCRF-CEM, Jurkat, THP1 and Molt-16), the nanocomplexes revealed ≤ 3.5 higher cytotoxic potential in comparison with the free drug in a range of nanomolar concentrations. Also, the intracellular drug's level evidenced C60 fullerene considerable nanocarrier function.The results of this study indicated that C60 fullerene-based delivery nanocomplexes had a potential value for optimization of doxorubicin efficiency against leukemic cells.
Collapse
Affiliation(s)
- Anna Grebinyk
- Division Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Hochschulring 1, 15745 Wildau, Germany
- Taras Shevchenko National University of Kyiv, Volodymyrska 64, Kyiv, 01601 Ukraine
- Department of Bioinformatics, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Svitlana Prylutska
- Taras Shevchenko National University of Kyiv, Volodymyrska 64, Kyiv, 01601 Ukraine
| | - Sergii Grebinyk
- Division Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Hochschulring 1, 15745 Wildau, Germany
| | - Yuriy Prylutskyy
- Taras Shevchenko National University of Kyiv, Volodymyrska 64, Kyiv, 01601 Ukraine
| | - Uwe Ritter
- Institute of Chemistry and Biotechnology, University of Technology Ilmenau, Weimarer Straße 25 (Curiebau), 98693 Ilmenau, Germany
| | - Olga Matyshevska
- Taras Shevchenko National University of Kyiv, Volodymyrska 64, Kyiv, 01601 Ukraine
| | - Thomas Dandekar
- Department of Bioinformatics, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Marcus Frohme
- Division Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Hochschulring 1, 15745 Wildau, Germany
| |
Collapse
|
35
|
Sheikhi A, Hayashi J, Eichenbaum J, Gutin M, Kuntjoro N, Khorsandi D, Khademhosseini A. Recent advances in nanoengineering cellulose for cargo delivery. J Control Release 2019; 294:53-76. [PMID: 30500355 PMCID: PMC6385607 DOI: 10.1016/j.jconrel.2018.11.024] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 11/16/2018] [Accepted: 11/25/2018] [Indexed: 12/26/2022]
Abstract
The recent decade has witnessed a growing demand to substitute synthetic materials with naturally-derived platforms for minimizing their undesirable footprints in biomedicine, environment, and ecosystems. Among the natural materials, cellulose, the most abundant biopolymer in the world with key properties, such as biocompatibility, biorenewability, and sustainability has drawn significant attention. The hierarchical structure of cellulose fibers, one of the main constituents of plant cell walls, has been nanoengineered and broken down to nanoscale building blocks, providing an infrastructure for nanomedicine. Microorganisms, such as certain types of bacteria, are another source of nanocelluloses known as bacterial nanocellulose (BNC), which benefit from high purity and crystallinity. Chemical and mechanical treatments of cellulose fibrils made up of alternating crystalline and amorphous regions have yielded cellulose nanocrystals (CNC), hairy CNC (HCNC), and cellulose nanofibrils (CNF) with dimensions spanning from a few nanometers up to several microns. Cellulose nanocrystals and nanofibrils may readily bind drugs, proteins, and nanoparticles through physical interactions or be chemically modified to covalently accommodate cargos. Engineering surface properties, such as chemical functionality, charge, area, crystallinity, and hydrophilicity, plays a pivotal role in controlling the cargo loading/releasing capacity and rate, stability, toxicity, immunogenicity, and biodegradation of nanocellulose-based delivery platforms. This review provides insights into the recent advances in nanoengineering cellulose crystals and fibrils to develop vehicles, encompassing colloidal nanoparticles, hydrogels, aerogels, films, coatings, capsules, and membranes, for the delivery of a broad range of bioactive cargos, such as chemotherapeutic drugs, anti-inflammatory agents, antibacterial compounds, and probiotics. SYNOPSIS: Engineering certain types of microorganisms as well as the hierarchical structure of cellulose fibers, one of the main building blocks of plant cell walls, has yielded unique families of cellulose-based nanomaterials, which have leveraged the effective delivery of bioactive molecules.
Collapse
Affiliation(s)
- Amir Sheikhi
- Department of Bioengineering, University of California - Los Angeles, 410 Westwood Plaza, Los Angeles, CA 90095, USA; Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI), University of California - Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Joel Hayashi
- Department of Bioengineering, University of California - Los Angeles, 410 Westwood Plaza, Los Angeles, CA 90095, USA; Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI), University of California - Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, USA
| | - James Eichenbaum
- Department of Bioengineering, University of California - Los Angeles, 410 Westwood Plaza, Los Angeles, CA 90095, USA; Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI), University of California - Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Mark Gutin
- Department of Bioengineering, University of California - Los Angeles, 410 Westwood Plaza, Los Angeles, CA 90095, USA; Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI), University of California - Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Nicole Kuntjoro
- Department of Bioengineering, University of California - Los Angeles, 410 Westwood Plaza, Los Angeles, CA 90095, USA; Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI), University of California - Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Danial Khorsandi
- Department of Bioengineering, University of California - Los Angeles, 410 Westwood Plaza, Los Angeles, CA 90095, USA; Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI), University of California - Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Ali Khademhosseini
- Department of Bioengineering, University of California - Los Angeles, 410 Westwood Plaza, Los Angeles, CA 90095, USA; Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI), University of California - Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, USA; Department of Radiological Sciences, David Geffen School of Medicine, University of California - Los Angeles, 10833 Le Conte Ave, Los Angeles, CA 90095, USA; Department of Chemical and Biomolecular Engineering, University of California - Los Angeles, 5531 Boelter Hall, Los Angeles, CA 90095, USA; Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Seoul 143-701, Republic of Korea.
| |
Collapse
|
36
|
Erwin AJ, Lee H, Ge S, Zhao S, Korolovych VF, He H, Matyjaszewski K, Sokolov AP, Tsukruk VV. Viscoelastic properties and ion dynamics in star-shaped polymerized ionic liquids. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.09.056] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
37
|
Cherpak V, Korolovych VF, Geryak R, Turiv T, Nepal D, Kelly J, Bunning TJ, Lavrentovich OD, Heller WT, Tsukruk VV. Robust Chiral Organization of Cellulose Nanocrystals in Capillary Confinement. NANO LETTERS 2018; 18:6770-6777. [PMID: 30351961 DOI: 10.1021/acs.nanolett.8b02522] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We showed large area uniformly aligned chiral photonic bioderived films from a liquid crystal phase formed by a cellulose nanocrystal (CNC) suspension placed in a thin capillary. As a result of the spatial confinement of the drying process, the interface between coexisting isotropic and chiral phases aligns perpendicular to the long axis of the capillary. This orientation facilitates a fast homogeneous growth of chiral pseudolayers parallel to the interface. Overall, the formation of organized solids takes hours vs weeks in contrast to the slow and heterogeneous process of drying from the traditional dish-cast approach. The saturation of water vapor in one end of the capillary causes anisotropic drying and promotes unidirectional propagation of the anisotropic phase in large regions that results in chiral CNC solid films with a uniformly oriented layered morphology. Corresponding ordering processes were monitored in situ at a nanoscale, mesoscale, and microscopic scale with complementary scattering and microscopic techniques. The resulting films show high orientation order at a multilength scale over large regions and preserved chiral handedness causing a narrower optical reflectance band and uniform birefringence over macroscopic regions in contrast to traditional dish-cast CNC films and those assembled in a magnetic field and on porous substrates. These thin films with a controllable and well-identified uniform morphology, structural colors, and handedness open up interesting possibilities for broad applications in bioderived photonic nanomaterials.
Collapse
Affiliation(s)
- V Cherpak
- School of Materials Science and Engineering, Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - V F Korolovych
- School of Materials Science and Engineering, Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - R Geryak
- School of Materials Science and Engineering, Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - T Turiv
- Liquid Crystal Institute and Chemical Physics Interdisciplinary Program , Kent State University , Kent , Ohio 44240 , United States
| | - D Nepal
- Air Force Research Laboratory, Materials and Manufacturing Directorate , Wright Patterson Air Force Base , Ohio 45433 , United States
| | - J Kelly
- Air Force Research Laboratory, Materials and Manufacturing Directorate , Wright Patterson Air Force Base , Ohio 45433 , United States
| | - T J Bunning
- Air Force Research Laboratory, Materials and Manufacturing Directorate , Wright Patterson Air Force Base , Ohio 45433 , United States
| | - O D Lavrentovich
- Liquid Crystal Institute and Chemical Physics Interdisciplinary Program , Kent State University , Kent , Ohio 44240 , United States
- Department of Physics , Kent State University , Kent , Ohio 44240 , United States
| | - W T Heller
- Neutron Scattering Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
| | - V V Tsukruk
- School of Materials Science and Engineering, Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| |
Collapse
|
38
|
Borodinov N, Belianinov A, Chang D, Carrillo JM, Burch MJ, Xu Y, Hong K, Ievlev AV, Sumpter BG, Ovchinnikova OS. Molecular reorganization in bulk bottlebrush polymers: direct observation via nanoscale imaging. NANOSCALE 2018; 10:18001-18009. [PMID: 30226257 DOI: 10.1039/c8nr05630g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Bottlebrush polymers are important for a variety of applications ranging from drug delivery to electronics. The functional flexibility of the branched sidechains has unique assembly properties when compared to linear block polymer systems. However, reports of direct observation of molecular reorganization have been sparse. This information is necessary to enhance the understanding of the structure-property relationships in these systems and yield a rational design approach for novel polymeric materials. In this work, we report direct visualization of bottlebrush molecular organization and the formation of nematic-type ordering in an amorphous polymer bottlebrush system, captured with plasma etching and helium ion microscopy. By observing the unperturbed structure of this material at high resolution and quantifying image features, we were able to qualitatively link experimental results with structures predicted by coarse-grained molecular dynamics simulations. The direct visualization and computation workflow developed in this work can be applied to a broad variety of polymers with different architectures, linking imaging results with other, independent channels of information for better understanding and control of these classes of materials.
Collapse
Affiliation(s)
- Nikolay Borodinov
- Center for Nanophase Materials Science, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|