1
|
Li H, Wang D, Zhang D, Zhou J, Yang W, Su Z, Sun W, Li C. Light-Initiated Imprinted Membrane-Based Biomimetic SERS Sensor toward Selective Detection of Trace MC-LR. Anal Chem 2024; 96:5887-5896. [PMID: 38567874 DOI: 10.1021/acs.analchem.3c05856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Microcystin-LR (MC-LR) is a severe threat to human and animal health; thus, monitoring it in the environment is essential, especially in water quality protections. Herein, in this work, we synthesize PVDF/CNT/Ag molecular imprinted membranes (PCA-MIMs) via an innovative combination of surface-enhanced Raman spectroscopy (SERS) detection, membrane separation, and molecular-imprinted technique toward the analysis of MC-LR in water. In particular, a light-initiated imprint is employed to protect the chemical structure of the MC-LR molecules. Furthermore, in order to ensure the detection sensitivity, the SERS substrates are combined with the membrane via the assistance of magnetism. The effect of synthesis conditions on the SERS sensitivity was investigated in detail. It is demonstrated from the characteristic results that the PCA-MIMs present high sensitivity to the MC-LR molecules with excellent selectivity against the interfere molecules. Results clearly show that the as-prepared PCA-MIMs hold great potential applications to detect trace MC-LR for the protection of water quality.
Collapse
Affiliation(s)
- Hongji Li
- Hainan Engineering Research Center of Tropical Ocean Advanced Opto-electrical Functional Materials, Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, Hainan Normal University, Haikou 571158, China
- College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Dandan Wang
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
| | - Dan Zhang
- Hainan Engineering Research Center of Tropical Ocean Advanced Opto-electrical Functional Materials, Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, Hainan Normal University, Haikou 571158, China
- College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Juan Zhou
- Hainan Engineering Research Center of Tropical Ocean Advanced Opto-electrical Functional Materials, Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, Hainan Normal University, Haikou 571158, China
- College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Weiting Yang
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
| | - Zhongmin Su
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
| | - Wei Sun
- Hainan Engineering Research Center of Tropical Ocean Advanced Opto-electrical Functional Materials, Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, Hainan Normal University, Haikou 571158, China
- College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Changming Li
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
2
|
Ikkene D, Six JL, Ferji K. Progress in Aqueous Dispersion RAFT PISA. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
3
|
Li S, Han G, Zhang W. Photoregulated reversible addition–fragmentation chain transfer (RAFT) polymerization. Polym Chem 2020. [DOI: 10.1039/d0py00054j] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Different strategies on photoregulated RAFT polymerization are developed. This minireview summarizes recent advances in photoregulated RAFT polymerization and its applications.
Collapse
Affiliation(s)
- Shenzhen Li
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Guang Han
- State Key Laboratory of Special Functional Waterproof Materials
- Beijing Oriental Yuhong Waterproof Technology Co
- Ltd
- Beijing 100123
- China
| | - Wangqing Zhang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| |
Collapse
|
4
|
Nie H, Li S, Qian S, Han Z, Zhang W. Switchable Reversible Addition–Fragmentation Chain Transfer (RAFT) Polymerization with the Assistance of Azobenzenes. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Huijun Nie
- Key Laboratory of Functional Polymer Materials of the Ministry of EducationInstitute of Polymer ChemistryCollege of ChemistryNankai University 300071 Tianjin China
| | - Shenzhen Li
- Key Laboratory of Functional Polymer Materials of the Ministry of EducationInstitute of Polymer ChemistryCollege of ChemistryNankai University 300071 Tianjin China
| | - Sijia Qian
- Key Laboratory of Functional Polymer Materials of the Ministry of EducationInstitute of Polymer ChemistryCollege of ChemistryNankai University 300071 Tianjin China
| | - Zhongqiang Han
- State Key Laboratory of Special Functional Waterproof MaterialsBeijing Oriental Yuhong Waterproof Technology Co., Ltd. 100123 Beijing China
| | - Wangqing Zhang
- Key Laboratory of Functional Polymer Materials of the Ministry of EducationInstitute of Polymer ChemistryCollege of ChemistryNankai University 300071 Tianjin China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)Nankai University 300071 Tianjin China
| |
Collapse
|
5
|
Nie H, Li S, Qian S, Han Z, Zhang W. Switchable Reversible Addition-Fragmentation Chain Transfer (RAFT) Polymerization with the Assistance of Azobenzenes. Angew Chem Int Ed Engl 2019; 58:11449-11453. [PMID: 31190462 DOI: 10.1002/anie.201904991] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/22/2019] [Indexed: 12/31/2022]
Abstract
Modulating controlled radical polymerization is an interesting and important issue. Herein, modulating RAFT polymerization employing photosensitive azobenzenes is achieved. In the presence of azobenzenes and with visible light off, RAFT polymerization runs smoothly and follows a pseudo-first-order kinetics. In contrast, with light on, RAFT polymerization is greatly decelerated or quenched depending on the type and concentration of azobenzenes. Switchable RAFT polymerization of different (meth)acrylate monomers alternatively with light off and on is demonstrated. A mechanism of photoregulating RAFT polymerization involving radical quenching by azobenzenes is proposed.
Collapse
Affiliation(s)
- Huijun Nie
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Shenzhen Li
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Sijia Qian
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Zhongqiang Han
- State Key Laboratory of Special Functional Waterproof Materials, Beijing Oriental Yuhong Waterproof Technology Co., Ltd., 100123, Beijing, China
| | - Wangqing Zhang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 300071, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, 300071, Tianjin, China
| |
Collapse
|
6
|
Tkachenko V, Matei Ghimbeu C, Vaulot C, Vidal L, Poly J, Chemtob A. RAFT-photomediated PISA in dispersion: mechanism, optical properties and application in templated synthesis. Polym Chem 2019. [DOI: 10.1039/c9py00209j] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Diblock copolymer nanoparticles were prepared by photomediated polymerization-induced self-assembly (“photo-PISA”) in dispersion.
Collapse
Affiliation(s)
| | | | - Cyril Vaulot
- Université de Haute-Alsace
- CNRS
- IS2M UMR7361
- F-68100 Mulhouse
- France
| | - Loïc Vidal
- Université de Haute-Alsace
- CNRS
- IS2M UMR7361
- F-68100 Mulhouse
- France
| | - Julien Poly
- Université de Haute-Alsace
- CNRS
- IS2M UMR7361
- F-68100 Mulhouse
- France
| | - Abraham Chemtob
- Université de Haute-Alsace
- CNRS
- IS2M UMR7361
- F-68100 Mulhouse
- France
| |
Collapse
|
7
|
Tan J, Xu Q, Zhang Y, Huang C, Li X, He J, Zhang L. Room Temperature Synthesis of Self-Assembled AB/B and ABC/BC Blends by Photoinitiated Polymerization-Induced Self-Assembly (Photo-PISA) in Water. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01456] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
8
|
Li X, Tan J, Xu Q, He J, Zhang L. Photoinitiated Seeded RAFT Dispersion Polymerization: A Facile Method for the Preparation of Epoxy-Functionalized Triblock Copolymer Nano-Objects. Macromol Rapid Commun 2018; 39:e1800473. [DOI: 10.1002/marc.201800473] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/24/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Xueliang Li
- Prof. J. Tan; Q. Xu; J. He; Prof. L. Zhang; Department of Polymeric Materials and Engineering; School of Materials and Energy; Guangdong University of Technology; Guangzhou 510006 China
| | - Jianbo Tan
- Prof. J. Tan; Q. Xu; J. He; Prof. L. Zhang; Department of Polymeric Materials and Engineering; School of Materials and Energy; Guangdong University of Technology; Guangzhou 510006 China
- Prof. L. Zhang; Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter; Guangdong University of Technology; Guangzhou 510006 China
| | - Qin Xu
- Prof. J. Tan; Q. Xu; J. He; Prof. L. Zhang; Department of Polymeric Materials and Engineering; School of Materials and Energy; Guangdong University of Technology; Guangzhou 510006 China
| | - Jun He
- Prof. J. Tan; Q. Xu; J. He; Prof. L. Zhang; Department of Polymeric Materials and Engineering; School of Materials and Energy; Guangdong University of Technology; Guangzhou 510006 China
| | - Li Zhang
- Prof. J. Tan; Q. Xu; J. He; Prof. L. Zhang; Department of Polymeric Materials and Engineering; School of Materials and Energy; Guangdong University of Technology; Guangzhou 510006 China
- Prof. L. Zhang; Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter; Guangdong University of Technology; Guangzhou 510006 China
| |
Collapse
|
10
|
He J, Xu Q, Tan J, Zhang L. Ketone-Functionalized Polymer Nano-Objects Prepared via Photoinitiated Polymerization-Induced Self-Assembly (Photo-PISA) Using a Poly(diacetone acrylamide)-Based Macro-RAFT Agent. Macromol Rapid Commun 2018; 40:e1800296. [DOI: 10.1002/marc.201800296] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/23/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Jun He
- Department of Polymeric Materials and Engineering; School of Materials and Energy; Guangdong University of Technology; Guangzhou 510006 China
| | - Qin Xu
- Department of Polymeric Materials and Engineering; School of Materials and Energy; Guangdong University of Technology; Guangzhou 510006 China
| | - Jianbo Tan
- Department of Polymeric Materials and Engineering; School of Materials and Energy; Guangdong University of Technology; Guangzhou 510006 China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter; Guangdong University of Technology; Guangzhou 510006 China
| | - Li Zhang
- Department of Polymeric Materials and Engineering; School of Materials and Energy; Guangdong University of Technology; Guangzhou 510006 China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter; Guangdong University of Technology; Guangzhou 510006 China
| |
Collapse
|