1
|
Zhang J, Jiang C, Deng G, Luo M, Ye B, Zhang H, Miao M, Li T, Zhang D. Closed-loop recycling of tough epoxy supramolecular thermosets constructed with hyperbranched topological structure. Nat Commun 2024; 15:4869. [PMID: 38849328 PMCID: PMC11161517 DOI: 10.1038/s41467-024-49272-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 05/23/2024] [Indexed: 06/09/2024] Open
Abstract
The regulation of topological structure of covalent adaptable networks (CANs) remains a challenge for epoxy CANs. Here, we report a strategy to develop strong and tough epoxy supramolecular thermosets with rapid reprocessability and room-temperature closed-loop recyclability. These thermosets were constructed from vanillin-based hyperbranched epoxy resin (VanEHBP) through the introduction of intermolecular hydrogen bonds and dual dynamic covalent bonds, as well as the formation of intramolecular and intermolecular cavities. The supramolecular structures confer remarkable energy dissipation capability of thermosets, leading to high toughness and strength. Due to the dynamic imine exchange and reversible noncovalent crosslinks, the thermosets can be rapidly and effectively reprocessed at 120â°C within 30âs. Importantly, the thermosets can be efficiently depolymerized at room temperature, and the recovered materials retain the structural integrity and mechanical properties of the original samples. This strategy may be employed to design tough, closed-loop recyclable epoxy thermosets for practical applications.
Collapse
Affiliation(s)
- Junheng Zhang
- Hubei R&D Center of Hyperbranched Polymers Synthesis and Applications, South-Central Minzu University, Wuhan, 430074, China.
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, China.
| | - Can Jiang
- Hubei R&D Center of Hyperbranched Polymers Synthesis and Applications, South-Central Minzu University, Wuhan, 430074, China
| | - Guoyan Deng
- Hubei R&D Center of Hyperbranched Polymers Synthesis and Applications, South-Central Minzu University, Wuhan, 430074, China
| | - Mi Luo
- State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, 230026, China
| | - Bangjiao Ye
- State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, 230026, China
| | - Hongjun Zhang
- State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, 230026, China.
| | - Menghe Miao
- Department of Mechanical Engineering, The University of Melbourne, Grattan Street, Parkville, Victoria, 3010, Australia
| | - Tingcheng Li
- Hubei R&D Center of Hyperbranched Polymers Synthesis and Applications, South-Central Minzu University, Wuhan, 430074, China
| | - Daohong Zhang
- Hubei R&D Center of Hyperbranched Polymers Synthesis and Applications, South-Central Minzu University, Wuhan, 430074, China.
| |
Collapse
|
2
|
Dutta T, Chaturvedi P, Llamas-Garro I, VelĂĄzquez-GonzĂĄlez JS, Dubey R, Mishra SK. Smart materials for flexible electronics and devices: hydrogel. RSC Adv 2024; 14:12984-13004. [PMID: 38655485 PMCID: PMC11033831 DOI: 10.1039/d4ra01168f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/05/2024] [Indexed: 04/26/2024] Open
Abstract
In recent years, flexible conductive materials have attracted considerable attention for their potential use in flexible energy storage devices, touch panels, sensors, memristors, and other applications. The outstanding flexibility, electricity, and tunable mechanical properties of hydrogels make them ideal conductive materials for flexible electronic devices. Various synthetic strategies have been developed to produce conductive and environmentally friendly hydrogels for high-performance flexible electronics. In this review, we discuss the state-of-the-art applications of hydrogels in flexible electronics, such as energy storage, touch panels, memristor devices, and sensors like temperature, gas, humidity, chemical, strain, and textile sensors, and the latest synthesis methods of hydrogels. Describe the process of fabricating sensors as well. Finally, we discussed the challenges and future research avenues for flexible and portable electronic devices based on hydrogels.
Collapse
Affiliation(s)
- Taposhree Dutta
- Department of Chemistry, Indian Institute of Engineering Science and Technology Shibpur Howrah W.B. - 711103 India
| | - Pavan Chaturvedi
- Department of Physics, Vanderbilt University 3414 Murphy Rd, Apt#4 Nashville TN-37203 USA +575-650-4595
| | - Ignacio Llamas-Garro
- Navigation and Positioning Research Unit, Centre TecnolĂČgic de Telecomunicacions de Catalunya Castelldefels Spain
| | | | - Rakesh Dubey
- Instiute of Physics, University of Szczecin Poland
| | - Satyendra Kumar Mishra
- Space and Reslinent Research Unit, Centre TecnolĂČgic de Telecomunicacions de Catalunya Castelldefels Spain
| |
Collapse
|
3
|
Jiang Y, Zhan D, Zhang M, Zhu Y, Zhong H, Wu Y, Tan Q, Dong X, Zhang D, Hadjichristidis N. Strong and Ultra-tough Ionic Hydrogel Based on Hyperbranched Macro-Cross-linker: Influence of Topological Structure on Properties. Angew Chem Int Ed Engl 2023; 62:e202310832. [PMID: 37646238 DOI: 10.1002/anie.202310832] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/01/2023]
Abstract
The application of hydrogels often suffers from their inherent limitation of poor mechanical properties. Here, a carboxyl-functionalized and acryloyl-terminated hyperbranched polycaprolactone (PCL) was synthesized and used as a macro-cross-linker to fabricate a super strong and ultra-tough ionic hydrogel. The terminal acryloyl groups of hyperbranched PCL are chemically incorporated into the network to form covalent cross-links, which contribute to robust networks. Meanwhile, the hydrophobic domains formed by the spontaneous aggregation of PCL chains and coordination bonds between Fe3+ and COO- groups serve as dynamic non-covalent cross-links, which enhance the energy dissipation ability. Especially, the influence of the hyperbranched topological structure of PCL on hydrogel properties has been well investigated, exhibiting superior strengthening and toughening effects compared to the linear one. Moreover, the hyperbranched PCL cross-linker also endowed the ionic hydrogel with higher sensitivity than the linear one when used as a strain sensor. As a result, this well-designed ionic hydrogel possesses high mechanical strength, superior toughness, and well ionic conductivity, exhibiting potential applications in the field of flexible strain sensors.
Collapse
Affiliation(s)
- Yu Jiang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, Hubei R&D Center of Hyperbranched Polymers Synthesis and Applications, South-Central Minzu University, Wuhan, 430074, P. R. China
| | - Dezhi Zhan
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, Hubei R&D Center of Hyperbranched Polymers Synthesis and Applications, South-Central Minzu University, Wuhan, 430074, P. R. China
| | - Meng Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, Hubei R&D Center of Hyperbranched Polymers Synthesis and Applications, South-Central Minzu University, Wuhan, 430074, P. R. China
| | - Ying Zhu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, Hubei R&D Center of Hyperbranched Polymers Synthesis and Applications, South-Central Minzu University, Wuhan, 430074, P. R. China
| | - Huiqing Zhong
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, Hubei R&D Center of Hyperbranched Polymers Synthesis and Applications, South-Central Minzu University, Wuhan, 430074, P. R. China
| | - Yangfei Wu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, Hubei R&D Center of Hyperbranched Polymers Synthesis and Applications, South-Central Minzu University, Wuhan, 430074, P. R. China
| | - Qinwen Tan
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, Hubei R&D Center of Hyperbranched Polymers Synthesis and Applications, South-Central Minzu University, Wuhan, 430074, P. R. China
| | - Xinhua Dong
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, Hubei R&D Center of Hyperbranched Polymers Synthesis and Applications, South-Central Minzu University, Wuhan, 430074, P. R. China
| | - Daohong Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, Hubei R&D Center of Hyperbranched Polymers Synthesis and Applications, South-Central Minzu University, Wuhan, 430074, P. R. China
| | - Nikos Hadjichristidis
- Polymer Synthesis Laboratory, Chemical Science Program, KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Kingdom of Saudi Arabia
| |
Collapse
|
4
|
Ma J, Zhou S, Lai Y, Wang Z, Ni N, Dai F, Xu Y, Yang X. Ionic Liquids Facilitate the Dispersion of Branched Polyethylenimine Grafted ZIF-8 for Reinforced Epoxy Composites. Polymers (Basel) 2023; 15:polym15081837. [PMID: 37111984 PMCID: PMC10146677 DOI: 10.3390/polym15081837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Metal-organic frameworks (MOFs) have been previously shown as an emerging modified class of epoxy resin. In this work, we report a simple strategy for preventing zeolitic imidazolate framework (ZIF-8) nanoparticles from agglomerating in epoxy resin (EP). Branched polyethylenimine grafted ZIF-8 in ionic liquid (BPEI-ZIF-8) nanofluid with good dispersion was prepared successfully using an ionic liquid as both the dispersant and curing agent. Results indicated that the thermogravimetric curve of the composite material had no noticeable change with increasing BPEI-ZIF-8/IL content. The glass transition temperature (Tg) of the epoxy composite was reduced with the addition of BPEI-ZIF-8/IL. The addition of 2 wt% BPEI-ZIF-8/IL into EP effectively improved the flexural strength to about 21.7%, and the inclusion of 0.5 wt% of BPEI-ZIF-8/IL EP composites increased the impact strength by about 83% compared to pure EP. The effect of adding BPEI-ZIF-8/IL on the Tg of epoxy resin was explored, and its toughening mechanism was analyzed in combination with SEM images showing fractures in the EP composites. Moreover, the damping and dielectric properties of the composites were improved by adding BPEI-ZIF-8/IL.
Collapse
Affiliation(s)
- Junchi Ma
- Key Laboratory for Light-Weight Materials, Nanjing Tech University, Nanjing 210009, China
| | - Shihao Zhou
- Key Laboratory for Light-Weight Materials, Nanjing Tech University, Nanjing 210009, China
| | - Yuanchang Lai
- Key Laboratory for Light-Weight Materials, Nanjing Tech University, Nanjing 210009, China
| | - Zhaodi Wang
- Key Laboratory for Light-Weight Materials, Nanjing Tech University, Nanjing 210009, China
| | - Nannan Ni
- Key Laboratory for Light-Weight Materials, Nanjing Tech University, Nanjing 210009, China
| | - Feng Dai
- Key Laboratory for Light-Weight Materials, Nanjing Tech University, Nanjing 210009, China
| | - Yahong Xu
- Key Laboratory for Light-Weight Materials, Nanjing Tech University, Nanjing 210009, China
| | - Xin Yang
- Key Laboratory for Light-Weight Materials, Nanjing Tech University, Nanjing 210009, China
| |
Collapse
|
5
|
Ahmadi-khaneghah A, Khosravi-ardakani S, Jahani A, Behniafar H. Binary Resin-Curing Agent Systems for Fabricating Epoxy and Graphene Oxide-loaded Epoxy Films. HIGH PERFORM POLYM 2023. [DOI: 10.1177/09540083231162513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
In this research, diglycidyl ethers of bisphenol-A (BADGE) and polyethylene glycol (PEGDGE) were binarily cured with a mixture of diamine curing agents including isophorone diamine and polyethylene glycol diamine (PEGDA) in the absence/presence of aminated graphene oxide nanoplatelets (AGNPs, 0.5 wt.%). Four molar ratios of diglycidyl ethers and curing agents were used stoichiometrically in isothermal curing systems. The films prepared from the epoxy networks were entirely strong and pliable. All epoxy thermosets were evaluated using field emission-scanning electron microscopy (FE-SEM), Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), and diffuse reflectance-ultraviolet/visible spectroscopy (DR-UV/vis). The absorption coefficients of the epoxy and AGNPs-loaded epoxy materials decreased with increasing the molar ratio of PEGDGE resin and polyethylene glycol diamine curing agent. According to dynamic mechanical analysis no phase heterogeneity occurred in the structure of the prepared thermostats. When the thermoset materials were loaded by AGNPs filler, the peaks associated with alpha relaxations shifted to higher temperatures. Moreover, thermogravimetric analysis demonstrated that the thermal stability of the prepared epoxy thermosets slightly increased after the addition of the nanoplatelets. In addition, the thermal resistance of the prepared thermosets decreased to some extent by increasing the participation rate of monomers containing polyoxyethylene.
Collapse
|
6
|
Montazerian H, Davoodi E, Baidya A, Badv M, Haghniaz R, Dalili A, Milani AS, Hoorfar M, Annabi N, Khademhosseini A, Weiss PS. Bio-macromolecular design roadmap towards tough bioadhesives. Chem Soc Rev 2022; 51:9127-9173. [PMID: 36269075 PMCID: PMC9810209 DOI: 10.1039/d2cs00618a] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Emerging sutureless wound-closure techniques have led to paradigm shifts in wound management. State-of-the-art biomaterials offer biocompatible and biodegradable platforms enabling high cohesion (toughness) and adhesion for rapid bleeding control as well as robust attachment of implantable devices. Tough bioadhesion stems from the synergistic contributions of cohesive and adhesive interactions. This Review provides a biomacromolecular design roadmap for the development of tough adhesive surgical sealants. We discuss a library of materials and methods to introduce toughness and adhesion to biomaterials. Intrinsically tough and elastic polymers are leveraged primarily by introducing strong but dynamic inter- and intramolecular interactions either through polymer chain design or using crosslink regulating additives. In addition, many efforts have been made to promote underwater adhesion via covalent/noncovalent bonds, or through micro/macro-interlock mechanisms at the tissue interfaces. The materials settings and functional additives for this purpose and the related characterization methods are reviewed. Measurements and reporting needs for fair comparisons of different materials and their properties are discussed. Finally, future directions and further research opportunities for developing tough bioadhesive surgical sealants are highlighted.
Collapse
Affiliation(s)
- Hossein Montazerian
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA.
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, USA
- Terasaki Institute for Biomedical Innovation, Los Angeles, Los Angeles, California 90024, USA.
| | - Elham Davoodi
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA.
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, USA
- Terasaki Institute for Biomedical Innovation, Los Angeles, Los Angeles, California 90024, USA.
- Multi-Scale Additive Manufacturing Lab, Mechanical and Mechatronics Engineering Department, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Avijit Baidya
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, USA.
| | - Maryam Badv
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, USA
- Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Reihaneh Haghniaz
- Terasaki Institute for Biomedical Innovation, Los Angeles, Los Angeles, California 90024, USA.
| | - Arash Dalili
- School of Engineering, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada
| | - Abbas S Milani
- School of Engineering, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada
| | - Mina Hoorfar
- School of Engineering, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada
- School of Engineering and Computer Science, University of Victoria, Victoria, British Columbia V8P 3E6, Canada
| | - Nasim Annabi
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA.
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, USA.
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, Los Angeles, California 90024, USA.
| | - Paul S Weiss
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA.
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, USA
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
7
|
Zhong L, Li T, Zhang J, Wang J, Zhang D. Simultaneously improving the flame retardancy and toughness of epoxy composites with hyperbranched phosphorus-containing polysiloxane functionalized halloysite nanotubes. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
8
|
Rahmani P, Shojaei A. A review on the features, performance and potential applications of hydrogel-based wearable strain/pressure sensors. Adv Colloid Interface Sci 2021; 298:102553. [PMID: 34768136 DOI: 10.1016/j.cis.2021.102553] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/09/2021] [Accepted: 10/23/2021] [Indexed: 01/11/2023]
Abstract
Over the past few years, development of wearable devices has gained increasing momentum. Notably, the demand for stretchable strain sensors has significantly increased due to many potential and emerging applications such as human motion monitoring, prosthetics, robotic systems, and touch panels. Recently, hydrogels have been developed to overcome the drawbacks of the elastomer-based wearable strain sensors, caused by insufficient biocompatibility, brittle mechanical properties, complicated fabrication process, as the hydrogels can provide a combination of various exciting properties such as intrinsic electrical conductivity, suitable mechanical properties, and biocompatibility. There are numerous research works reported in the literature which consider various aspects as preparation approaches, design strategies, properties control, and applications of hydrogel-based strain sensors. This article aims to present a review on this exciting topic with a new insight on the hydrogel-based wearable strain sensors in terms of their features, strain sensory performance, and prospective applications. In this respect, we first briefly review recent advances related to designing the materials and the methods for promoting hydrogels' intrinsic features. Then, strain (both tensile and pressure) sensing performance of prepared hydrogels is critically studied, and alternative approaches for their high-performance sensing are proposed. Subsequently, this review provides several promising applications of hydrogel-based strain sensors, including bioapplications and human-machine interface devices. Finally, challenges and future outlooks of conductive and stretchable hydrogels employed in the wearable strain sensors are discussed.
Collapse
|
9
|
|
10
|
Honeycomb-structured solid acid catalysts fabricated via the swelling-induced self-assembly of acidic poly(ionic liquid)s for highly efficient hydrolysis reactions. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(20)63658-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Huo S, Yang S, Wang J, Cheng J, Zhang Q, Hu Y, Ding G, Zhang Q, Song P. A liquid phosphorus-containing imidazole derivative as flame-retardant curing agent for epoxy resin with enhanced thermal latency, mechanical, and flame-retardant performances. JOURNAL OF HAZARDOUS MATERIALS 2020; 386:121984. [PMID: 31896008 DOI: 10.1016/j.jhazmat.2019.121984] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 12/01/2019] [Accepted: 12/26/2019] [Indexed: 05/25/2023]
Abstract
The development of phosphorus-containing flame retardants combining good compatibility with matrix, low curing temperature, and mechanically reinforcing effect has remained a major challenge. Herein, we reported the synthesis of a liquid flame-retardant curing agent (DA) via the nucleophilic substitution between diphenylphosphinic chloride and 1-(3-aminopropyl)-imidazole (AI). DA exhibited good blending and latency towards epoxy resin (EP) at room temperature. According to DSC studies, DA could rapidly cure EP at moderate temperature. Compared with EP/AI sample, EP/DA samples displayed comparable or higher glass transition temperature (Tg) and enhanced mechanical properties due to the introduction of rigid diphenylphosphinyl group and improved cross-linking density. Moreover, DA improved the flame-retardant performances of EP thermoset. For instance, the LOI and UL94 rating of EP/DA-16 sample achieved 37.2 % and V-0, respectively. In addition, the peak of heat release rate (PHRR), average of heat release rate (AHRR), fire growth rate (FIGRA), and total heat release (THR) for EP/DA-16 sample reduced by 32 %, 42 %, 28 % and 27 % in comparison to EP/AI sample, respectively. DA was characterized by its good compatibility with EP, moderate curing temperature, fast curing rate, suitable thermal latency, mechanical reinforcing and flame-retardant effects, and thus it had a broad application prospect in various industrial fields.
Collapse
Affiliation(s)
- Siqi Huo
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430070, People's Republic of China; Center for Future Materials, University of Southern Queensland, Toowoomba 4350, Australia
| | - Shuang Yang
- School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan 430070, People's Republic of China; Institute of Advanced Material Manufacturing Equipment and Technology, Wuhan University of Technology, Wuhan 430070, People's Republic of China.
| | - Jun Wang
- Institute of Advanced Material Manufacturing Equipment and Technology, Wuhan University of Technology, Wuhan 430070, People's Republic of China; School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Jianwen Cheng
- Institute of Advanced Material Manufacturing Equipment and Technology, Wuhan University of Technology, Wuhan 430070, People's Republic of China; School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Qianqian Zhang
- Institute of Advanced Material Manufacturing Equipment and Technology, Wuhan University of Technology, Wuhan 430070, People's Republic of China; School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Yefa Hu
- School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan 430070, People's Republic of China; Institute of Advanced Material Manufacturing Equipment and Technology, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Guoping Ding
- School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan 430070, People's Republic of China; Institute of Advanced Material Manufacturing Equipment and Technology, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Qiaoxin Zhang
- School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan 430070, People's Republic of China; Institute of Advanced Material Manufacturing Equipment and Technology, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Pingan Song
- Center for Future Materials, University of Southern Queensland, Toowoomba 4350, Australia.
| |
Collapse
|
12
|
Zhang R, Hu H, Chen H, Li S, Ying C, Huang S, Liu Q, Fu X, Hu S, Wong C. Simultaneous improvement of thermal conductivity and mechanical properties for mechanically mixed ABS/hâBN composites by using small amounts of hyperbranched polymer additives. J Appl Polym Sci 2020. [DOI: 10.1002/app.49186] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Rong Zhang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center of Green Lightâweight Materials and ProcessingHubei University of Technology Wuhan China
| | - Hailong Hu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center of Green Lightâweight Materials and ProcessingHubei University of Technology Wuhan China
| | - Hai Chen
- Anhui Jihong Polymer Technology Co., Ltd Hefei China
| | - Siqi Li
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center of Green Lightâweight Materials and ProcessingHubei University of Technology Wuhan China
| | - Cheng Ying
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center of Green Lightâweight Materials and ProcessingHubei University of Technology Wuhan China
| | - Shuai Huang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center of Green Lightâweight Materials and ProcessingHubei University of Technology Wuhan China
| | - Qingting Liu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center of Green Lightâweight Materials and ProcessingHubei University of Technology Wuhan China
| | - Xudong Fu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center of Green Lightâweight Materials and ProcessingHubei University of Technology Wuhan China
| | - Shengfei Hu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center of Green Lightâweight Materials and ProcessingHubei University of Technology Wuhan China
| | - ChingâPing Wong
- School of Materials Science and EngineeringGeorgia Institute of Technology Atlanta Georgia USA
| |
Collapse
|
13
|
Yin B, Xu W, Liu C, Kong M, Lv Y, Huang Y, Yang Q, Li G. Synthesis of poly(ionic liquid) for trifunctional epoxy resin with simultaneously enhancing the toughness, thermal and dielectric performances. RSC Adv 2020; 10:2085-2095. [PMID: 35494607 PMCID: PMC9048971 DOI: 10.1039/c9ra10516f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 12/30/2019] [Indexed: 11/21/2022] Open
Abstract
Poly(ionic liquid) (PIL), integrating the characteristics of both polymers and ionic liquid, is synthesized and employed to modify diglycidyl-4,5-epoxy-cyclohexane-1,2-dicarboxylate (TDE-85). With the addition of PIL, the fracture toughness, and thermal and dielectric performances of TDE-85 were discovered to be simultaneously improved, meanwhile the tensile modulus and strength is increased. Upon an optimal loading of 3 wt% PIL, the critical stress intensity factor (K IC), tensile modulus and strength are raised by 92.9%, 13.3% and 10.7%, respectively. Multi-toughening mechanisms due to spherical domains of PIL formed in TDE-85 during curing are responsible for the improved toughness. Moreover, the dielectric and thermal properties of TDE-85 are also enhanced by adding PIL. With the optimal addition of 5 wt% PIL, the dielectric constant of the composites is enhanced by 62.5%, the glass transition temperature is increased by 16.58 °C and the residual weight of carbon is increased by 59%.
Collapse
Affiliation(s)
- Bingyan Yin
- School of Aeronautics and Astronautics, Sichuan University Chengdu 610065 People's Republic of China
| | - Wenqing Xu
- School of Aeronautics and Astronautics, Sichuan University Chengdu 610065 People's Republic of China
| | - Chengjun Liu
- School of Aeronautics and Astronautics, Sichuan University Chengdu 610065 People's Republic of China
| | - Miqiu Kong
- School of Aeronautics and Astronautics, Sichuan University Chengdu 610065 People's Republic of China
| | - Yadong Lv
- School of Aeronautics and Astronautics, Sichuan University Chengdu 610065 People's Republic of China
| | - Yajiang Huang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering of China, Sichuan University Chengdu 610065 People's Republic of China
| | - Qi Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering of China, Sichuan University Chengdu 610065 People's Republic of China
| | - Guangxian Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering of China, Sichuan University Chengdu 610065 People's Republic of China
| |
Collapse
|
14
|
Wang P, Chen L, Xiao H, Zhan T. Nitrogen/sulfur-containing DOPO based oligomer for highly efficient flame-retardant epoxy resin. Polym Degrad Stab 2020. [DOI: 10.1016/j.polymdegradstab.2019.109023] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Toughening benzoxazine/epoxy thermosets through control of interfacial interactions and morphologies by hyperbranched polymeric ionic liquids. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111251] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|