1
|
Li Y, Xie J, Cheng H, Wei X, Chen J, You L, Chen W. Polyvinyl alcohol-based polarizers for new displays: molecules, processing and properties. SOFT MATTER 2025; 21:3148-3167. [PMID: 40176681 DOI: 10.1039/d4sm01530d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Polarizers are a key component of new display panels (i.e. liquid crystal displays (LCDs) and organic light-emitting diodes (OLEDs)), consisting of a polarizing film, support film, compensation film, and optical clear adhesives between the layers. The key functional layer is the iodine-doped polyvinyl alcohol (PVA) film. The processing of polarizers involves the synthesis of an optical-grade PVA resin, followed by the preparation of highly oriented iodine-doped PVA films, which includes the film casting, iodine doping, boric acid crosslinking, and post-stretching steps. Revealing the multi-scale structure and changes in chain dynamics during processing is crucial for establishing the structure-process-property relationship of PVA-based polarizers. The current work reviews the recent research progress in this direction, primarily including the following: (1) primary chemical structure of PVA, (2) solution casting of PVA films, (3) hierarchical structure and dynamics heterogeneity of plasticized PVA films, (4) formation mechanism of PVA-iodine complexes, and (5) crosslinking mechanism of boric acid in PVA.
Collapse
Affiliation(s)
- Yao Li
- School of Nuclear Science and Technology, National Synchrotron Radiation Laboratory, Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film, CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, Hefei 230026, China.
| | - Jiayu Xie
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Hong Cheng
- School of Nuclear Science and Technology, National Synchrotron Radiation Laboratory, Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film, CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, Hefei 230026, China.
| | - Xiaoying Wei
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, School of Engineering Science, University of Science and Technology of China, Hefei, 230026, China
| | - Jie Chen
- School of Nuclear Science and Technology, National Synchrotron Radiation Laboratory, Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film, CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, Hefei 230026, China.
| | - Liangpeng You
- School of Nuclear Science and Technology, National Synchrotron Radiation Laboratory, Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film, CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, Hefei 230026, China.
| | - Wei Chen
- School of Nuclear Science and Technology, National Synchrotron Radiation Laboratory, Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film, CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
2
|
Pesek S, Silaghi-Dumitrescu R. The Iodine/Iodide/Starch Supramolecular Complex. Molecules 2024; 29:641. [PMID: 38338385 PMCID: PMC10856212 DOI: 10.3390/molecules29030641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/21/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
The nature of the blue color in the iodine-starch reaction (or, in most cases, iodine-iodide-starch reaction, i.e., I2 as well as I- are typically present) has for decades elicited debate. The intensity of the color suggests a clear charge-transfer nature of the band at ~600 nm, and there is consensus regarding the fact that the hydrophobic interior of the amylose helix is the location where iodine binds. Three types of possible sources of charge transfer have been proposed: (1) chains of neutral I2 molecules, (2) chains of poly-iodine anions (complicated by the complex speciation of the I2-I- mixture), or (3) mixtures of I2 molecules and iodide or polyiodide anions. An extended literature review of the topic is provided here. According to the most recent data, the best candidate for the "blue complex" is an I2-I5--I2 unit, which is expected to occur in a repetitive manner inside the amylose helix.
Collapse
Affiliation(s)
| | - Radu Silaghi-Dumitrescu
- Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, 11 Arany Janos Street, 400028 Cluj-Napoca, Romania;
| |
Collapse
|
3
|
Li X, Xiang Z, Dang W, Lin Z, Wang H, Wang H, Ye D, Yao R. High-yield and scalable cellulose nanomesh preparation via dilute acid vapor and enzymatic hydrolysis-mediated nanofabrication. Carbohydr Polym 2024; 323:121370. [PMID: 37940267 DOI: 10.1016/j.carbpol.2023.121370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 11/10/2023]
Abstract
Nanocellulose has received considerable attention in diverse research fields owing to its unique nanostructure-mediated physicochemical properties. However, classical acid hydrolysis usually destroys the microstructural integrity of cellulose, leading to the violent dissociation of cellulose into low-dimensional nanofibers and limiting the formation of intact structures with high specific surface areas. Herein, we have optimized the methodology of dilute acid vapor hydrolysis combined with the enzymatic hydrolysis (DAVE) method and investigated the pore formation mechanism of cellulose nanomesh (CNM). Benefiting from the selective nano-engraving effect of hydrochloric acid vapor on the amorphous region of cellulose followed by widening of the three-dimensional nanopores using enzymatic hydrolysis, confirmed by topographic, spectroscopic, and crystallographic tests, the as-prepared CNM, significantly different from the existing nanocellulose, exhibited improved specific surface area (98.37 m2/g), high yield (88.5 %), high crystallinity (73.4 %), and excellent thermal stability (375.4 °C). The proposed DAVE approach may open a new avenue for nanocellulose manufacturing.
Collapse
Affiliation(s)
- Xiaowen Li
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, China
| | - Zhongrun Xiang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, China
| | - Wanting Dang
- Department of Pharmaceutical Science and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, China
| | - Zewan Lin
- College of Light Textile Engineering and Art, Anhui Agricultural University, Hefei, Anhui 230036, China; Biomass Molecular Engineering Centre, Hefei, Anhui 230036, China
| | - Huai Wang
- Department of Pharmaceutical Science and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, China
| | - Huiqing Wang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, China.
| | - Dongdong Ye
- College of Light Textile Engineering and Art, Anhui Agricultural University, Hefei, Anhui 230036, China; Biomass Molecular Engineering Centre, Hefei, Anhui 230036, China.
| | - Risheng Yao
- Department of Pharmaceutical Science and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, China.
| |
Collapse
|
4
|
Tian S, Yi Z, Chen J, Fu S. In situ growth of UiO-66-NH 2 in wood-derived cellulose for iodine adsorption. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130236. [PMID: 36332282 DOI: 10.1016/j.jhazmat.2022.130236] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
The capture of radioactive iodine is an inevitable requirement in nuclear industry for environmental protection. Metal-organic frameworks (MOFs) are a new generation of sorbents that have wide applications for iodine adsorption and recovery. Although the loading of MOFs on wood can avoid the drawbacks of the powder form of MOFs in implementation, the dense structure of wood results in the lower loading, even after delignification, which limits the adsorption capacity. Herein, a hierarchically porous UiO-66-NH2 @WCA composite was fabricated by in-situ synthesis of UiO-66-NH2 in wood-derived cellulose aerogel (WCA) that was further removed hemicellulose from delignified wood. UiO-66-NH2 @WCA exhibited a high loading (36 wt%) of UiO-66-NH2 crystals and a high adsorption capacity of 704 mg/g for iodine vapor and 248 mg/g for iodine aqueous solution. The adsorption behavior in iodine aqueous solution was well predicted by the Freundlich isotherm and pseudo-second-order kinetic model. The adsorption capacity of UiO-66-NH2 @WCA was highest in solution when the pH was 6, while the ionic strength had little effect. The hydroxyl groups on the WCA matrix had a charge transfer effect with iodine, providing additional sites for iodine capture. Furthermore, a packed column system was applied to demonstrate the excellent recyclability and potential for practical application.
Collapse
Affiliation(s)
- Shenglong Tian
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, Guangdong Province 510640, China
| | - Zede Yi
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, Guangdong Province 510640, China
| | - Junqing Chen
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, Guangdong Province 510640, China
| | - Shiyu Fu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, Guangdong Province 510640, China; South China University of Technology-Zhuhai Institute of Modern Industrial Innovation, Zhuhai 519175, China.
| |
Collapse
|
5
|
On the Origin of the Blue Color in The Iodine/Iodide/Starch Supramolecular Complex. Molecules 2022; 27:molecules27248974. [PMID: 36558106 PMCID: PMC9784209 DOI: 10.3390/molecules27248974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
The nature of the blue color in the iodine-starch reaction is still a matter of debate. Some textbooks still invoke charge-transfer bands within a chain of neutral I2 molecules inside the hydrophobic channel defined by the interior of the amylose helical structure. However, the consensus is that the interior of the helix is not altogether hydrophobic-and that a mixture of I2 molecules and iodide anions reside there and are responsible for the intense charge-transfer bands that yield the blue color of the "iodine-starch complex". Indeed, iodide is a prerequisite of the reaction. However, some debate still exists regarding the nature of the iodine-iodine units inside the amylose helix. Species such as I3-, I5-, I7- etc. have been invoked. Here, we report UV-vis titration data and computational simulations using density functional theory (DFT) for the iodine/iodide chains as well as semiempirical (AM1, PM3) calculations of the amylose-iodine/iodide complexes, that (1) confirm that iodide is a pre-requisite for blue color formation in the iodine-starch system, (2) propose the nature of the complex to involve alternating sets of I2 and Ix- units, and (3) identify the nature of the charge-transfer bands as involving transfer from the Ix- σ* orbitals (HOMO) to I2 σ* LUMO orbitals. The best candidate for the "blue complex", based on DFT geometry optimizations and TD-DFT spectral simulations, is an I2-I5-I2 unit, which is expected to occur in a repetitive manner inside the amylose helix.
Collapse
|
6
|
Dorieh A, Ayrilmis N, Farajollah Pour M, Ghafari Movahed S, Valizadeh Kiamahalleh M, Shahavi MH, Hatefnia H, Mehdinia M. Phenol formaldehyde resin modified by cellulose and lignin nanomaterials: Review and recent progress. Int J Biol Macromol 2022; 222:1888-1907. [DOI: 10.1016/j.ijbiomac.2022.09.279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/06/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022]
|
7
|
Xu Y, Gao M, Zhang Y, Ning L, Zhao D, Ni Y. Cellulose Hollow Annular Nanoparticles Prepared from High-Intensity Ultrasonic Treatment. ACS NANO 2022; 16:8928-8938. [PMID: 35687786 DOI: 10.1021/acsnano.1c11167] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cellulose nanomaterials, such as cellulose nanocrystals (CNCs), have received enormous attention in various material research fields due to their unique properties and green/sustainable nature, among other qualities. Herein, we report hollow-type annular cellulose nanocrystals (HTA-CNCs), which are generated by following a high-intensity ultrasonic treatment. The advanced aberration-corrected transmission electron microscopy results reveal that HTA-CNCs exhibit ring structures with a typical diameter of 10.0-30.0 nm, a width of 3.0-4.0 nm, and a thickness of 2.0-5.0 nm, similar to those of elementary crystallites. The X-ray diffraction measurements show that the as-prepared HTA-CNCs maintain the cellulose I structure. The changes in structure and hydrogen-bonding characteristics of HTA-CNCs are further determined based on the FT-IR results after deconvolution fitting, showing that three types of hydrogen bonds decrease and the content of free OH increases in HTA-CNCs compared with those in the original CNCs. Furthermore, molecular dynamics simulation is carried out to support the experimental study. The formation of HTA-CNCs might be attributed to the structural change and entropy increase. The hollow-type annular CNCs may have broad value-added applications as cellulose nanomaterials in different fields.
Collapse
Affiliation(s)
- Yongjian Xu
- College of Light Industry and Energy, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Minlan Gao
- College of Light Industry and Energy, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Yongqi Zhang
- College of Bioengineering, Sichuan University of Science and Engineering, YiBin 644000, China
| | - Lulu Ning
- College of Light Industry and Energy, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Deqing Zhao
- College of Bioengineering, Sichuan University of Science and Engineering, YiBin 644000, China
| | - Yonghao Ni
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada
| |
Collapse
|
8
|
Ren H, Gao B, Wang M. Formation and structure of iodine complex of polyacrylonitrile studied by vibrational spectroscopy. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
The role of natural rubber endogenous proteins in promoting the formation of vulcanization networks. E-POLYMERS 2022. [DOI: 10.1515/epoly-2022-0043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Non-rubber components are critical in the formation of the natural rubber (NR) vulcanization network, which leads to outstanding mechanical properties of NR. This study reports the effect of NR endogenous proteins (C-serum protein/lutoid protein [CSP/LP]) on the formation of vulcanization networks at the molecular level. Results indicate that CSP/LP has a positive effect on vulcanization. Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopy analyses demonstrate that the decrease in vulcanization time of CSP/LP is ascribed to coordination interaction between Zn2+ and amide bond. The interaction increases the availability of ZnO in the matrix, thereby promoting the formation of the vulcanized network. CSP/LP also participates in the construction of the vulcanization network as a new crosslinking point, thus increasing crosslinking density and improving the mechanical properties of the NR. This study provides new research ideas for studying the relationship among component–structure–property of NR materials and developing high-strength and high-toughness elastomer materials.
Collapse
|
10
|
Verdel N, Rijavec T, Rybkin I, Erzin A, Velišček Ž, Pintar A, Lapanje A. Isolation, Identification, and Selection of Bacteria With Proof-of-Concept for Bioaugmentation of Whitewater From Wood-Free Paper Mills. Front Microbiol 2021; 12:758702. [PMID: 34671337 PMCID: PMC8521037 DOI: 10.3389/fmicb.2021.758702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 09/13/2021] [Indexed: 11/13/2022] Open
Abstract
In the wood-free paper industry, whitewater is usually a mixture of additives for paper production. We are currently lacking an efficient, cost-effective purification technology for their removal. In closed whitewater cycles the additives accumulate, causing adverse production problems, such as the formation of slime and pitch. The aim of our study was to find an effective bio-based strategy for whitewater treatment using a selection of indigenous bacterial isolates. We first obtained a large collection of bacterial isolates and then tested them individually by simple plate and spectrophotometric methods for their ability to degrade the papermaking additives, i.e., carbohydrates, resin acids, alkyl ketene dimers, polyvinyl alcohol, latex, and azo and fluorescent dyes. We examined correlation between carbon source use, genera, and inoculum source of isolates using two multivariate methods: principal component analysis and FreeViz projection. Of the 318 bacterial isolates, we selected a consortium of four strains (Xanthomonadales bacterium sp. CST37-CF, Sphingomonas sp. BLA14-CF, Cellulosimicrobium sp. AKD4-BF and Aeromonas sp. RES19-BTP) that degrade the entire spectrum of tested additives by means of dissolved organic carbon measurements. A proof-of-concept study on a pilot scale was then performed by immobilizing the artificial consortium of the four strains and inserting them into a 33-liter, tubular flow-through reactor with a retention time of < 15 h. The consortium caused an 88% reduction in the COD of the whitewater, even after 21 days.
Collapse
Affiliation(s)
- Nada Verdel
- Department of Inorganic Chemistry and Technology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Tomaž Rijavec
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Iaroslav Rybkin
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Anja Erzin
- Faculty of Chemistry and Chemical Technology, Graduate School, University of Ljubljana, Ljubljana, Slovenia
| | | | - Albin Pintar
- Department of Inorganic Chemistry and Technology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Aleš Lapanje
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| |
Collapse
|
11
|
Proton-transfer and charge-transfer interactions between the antibiotic trimethoprim and several σ− and π−acceptors: A spectroscopic study. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129687] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
12
|
Adam AMA, Saad HA, Alsuhaibani AM, Refat MS, Hegab MS. Charge-transfer chemistry of azithromycin, the antibiotic used worldwide to treat the coronavirus disease (COVID-19). Part I: Complexation with iodine in different solvents. J Mol Liq 2021; 325:115187. [PMID: 33390633 PMCID: PMC7764390 DOI: 10.1016/j.molliq.2020.115187] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/14/2020] [Accepted: 12/22/2020] [Indexed: 12/24/2022]
Abstract
Around the world, the antibiotic azithromycin (AZM) is currently being used to treat the coronavirus disease (COVID-19) in conjunction with hydroxychloroquine or chloroquine. Investigating the chemical and physical properties of compounds used alone or in combination to combat the COVID-19 pandemic is of vital and pressing importance. The purpose of this study was to characterize the charge transfer (CT) complexation of AZM with iodine in four different solvents: CH2Cl2, CHCl3, CCl4, and C6H5Cl. AZM reacted with iodine at a 1:1 M ratio (AZM to I2) in the CHCl3 solvent and a 1:2 M ratio in the other three solvents, as evidenced by data obtained from an elemental analysis of the solid CT products and spectrophotometric titration and Job's continuous variation method for the soluble CT products. Data obtained from UV-visible and Raman spectroscopies indicated that AZM strongly interacted with iodine in the CH2Cl2, CCl4, and C6H5Cl solvents by a physically potent n→σ* interaction to produce a tri-iodide complex formulated as [AZM·I+]I3 -. XRD and TEM analyses revealed that, in all solvents, the AZM-I2 complex possessed an amorphous structure composed of spherical particles ranging from 80 to 110 nm that tended to aggregate into clusters. The findings described in the present study will hopefully contribute to optimizing the treatment protocols for COVID-19.
Collapse
Affiliation(s)
- Abdel Majid A Adam
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Hosam A Saad
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Amnah M Alsuhaibani
- Department of Physical Sport Science, Princess Nourah bint Abdulrahman University, 4545 - King Khalid Airport Unit No. 1, Riyadh 13415-7132, Saudi Arabia
| | - Moamen S Refat
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mohamed S Hegab
- Deanship of Supportive Studies (D.S.S.), Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
13
|
Ye K, Li Y, Zhang W, Chen W, Zhang Q, Wang D, Li L. Stretch-induced structural evolution of dichromatic substance with poly (vinyl alcohol) at different concentrations of boric acid: An in-situ synchrotron radiation small- and wide-angle X-ray scattering study. POLYMER 2021. [DOI: 10.1016/j.polymer.2020.123297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
14
|
Makhayeva DN, Irmukhametova GS, Khutoryanskiy VV. Polymeric Iodophors: Preparation, Properties, and Biomedical Applications. REVIEW JOURNAL OF CHEMISTRY 2020; 10:40-57. [PMID: 33362938 PMCID: PMC7749746 DOI: 10.1134/s2079978020010033] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/19/2020] [Accepted: 09/28/2020] [Indexed: 12/23/2022]
Abstract
The review summarizes the data on the main chemical and physiological properties of iodine and its capability of complexation with natural and synthetic polymers. Iodine is the best known antiseptic used to prevent and treat microbial infections. Its unique capability of complexation with certain polymers opens wide opportunities for targeted and prolonged delivery to target organs. Polymeric complexes with iodine have another color, other morphology, a higher electrical conductivity, and higher biological activity as compared with initial polymers. The formation of and ions is associated with iodine-polymer complexation. Iodine-containing biocompatible adhesive controlled-release formulations are designed as part of research into iodine-polymer complexes. The field is promising in terms of treating certain diseases because tolerance to iodine compounds does not usually develop in microbial cells.
Collapse
Affiliation(s)
- D. N. Makhayeva
- Al-Farabi Kazakh National University, 050040 Almaty, Kazakhstan
| | | | - V. V. Khutoryanskiy
- University of Reading, Whiteknights, RG6 6AH Reading, Berkshire United Kingdom
| |
Collapse
|
15
|
Wang M, Takahama T, Tashiro K. Crystalline Iodine Complexes of Amorphous Poly(vinyl acetate) as Studied by X-ray Diffraction, Vibrational Spectroscopy, and Computer Simulation. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mengfan Wang
- Department of Future Industry-Oriented Basic Science and Materials, Toyota Technological Institute, Tempaku, Nagoya 468-8511, Japan
| | - Tomohiko Takahama
- Department of Future Industry-Oriented Basic Science and Materials, Toyota Technological Institute, Tempaku, Nagoya 468-8511, Japan
| | - Kohji Tashiro
- Department of Future Industry-Oriented Basic Science and Materials, Toyota Technological Institute, Tempaku, Nagoya 468-8511, Japan
| |
Collapse
|
16
|
Exploring the unique characteristics of natural rubber induced by coordination interaction between proteins and Zn2+. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122357] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|