1
|
Panahi-Sarmad M, Alikarami N, Guo T, Haji M, Jiang F, Rojas OJ. Aerogels based on Bacterial Nanocellulose and their Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403583. [PMID: 39073312 DOI: 10.1002/smll.202403583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/01/2024] [Indexed: 07/30/2024]
Abstract
Microbial cellulose stands out for its exceptional characteristics in the form of biofilms formed by highly interlocked fibrils, namely, bacterial nanocellulose (BNC). Concurrently, bio-based aerogels are finding uses in innovative materials owing to their lightweight, high surface area, physical, mechanical, and thermal properties. In particular, bio-based aerogels based on BNC offer significant opportunities as alternatives to synthetic or mineral counterparts. BNC aerogels are proposed for diverse applications, ranging from sensors to medical devices, as well as thermal and electroactive systems. Due to the fibrous nanostructure of BNC and the micro-porosity of BNC aerogels, these materials enable the creation of tailored and specialized designs. Herein, a comprehensive review of BNC-based aerogels, their attributes, hierarchical, and multiscale features are provided. Their potential across various disciplines is highlighted, emphasizing their biocompatibility and suitability for physical and chemical modification. BNC aerogels are shown as feasible options to advance material science and foster sustainable solutions through biotechnology.
Collapse
Affiliation(s)
- Mahyar Panahi-Sarmad
- Department of Wood Science, The University of British Columbia, 2900-2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
- Bioproducts Institute, University of British Columbia, 2385 Agronomy Rd and East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Niloofar Alikarami
- Bioproducts Institute, University of British Columbia, 2385 Agronomy Rd and East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Tianyu Guo
- Bioproducts Institute, University of British Columbia, 2385 Agronomy Rd and East Mall, Vancouver, BC, V6T 1Z4, Canada
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Mehri Haji
- Bioproducts Institute, University of British Columbia, 2385 Agronomy Rd and East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Feng Jiang
- Department of Wood Science, The University of British Columbia, 2900-2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
- Bioproducts Institute, University of British Columbia, 2385 Agronomy Rd and East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Orlando J Rojas
- Department of Wood Science, The University of British Columbia, 2900-2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
- Bioproducts Institute, University of British Columbia, 2385 Agronomy Rd and East Mall, Vancouver, BC, V6T 1Z4, Canada
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC, V6T 1Z3, Canada
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
| |
Collapse
|
2
|
Guo T, Mashhadimoslem H, Choopani L, Salehi MM, Maleki A, Elkamel A, Yu A, Zhang Q, Song J, Jin Y, Rojas OJ. Recent Progress in MOF-Aerogel Fabrication and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402942. [PMID: 38975677 DOI: 10.1002/smll.202402942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/20/2024] [Indexed: 07/09/2024]
Abstract
Recent advancements in metal-organic frameworks (MOFs) underscore their significant potential in chemical and materials research, owing to their remarkable properties and diverse structures. Despite challenges like intrinsic brittleness, powdered crystalline nature, and limited stability impeding direct applications, MOF-based aerogels have shown superior performance in various areas, particularly in water treatment and contaminant removal. This review highlights the latest progress in MOF-based aerogels, with a focus on hybrid systems incorporating materials like graphene, carbon nanotube, silica, and cellulose in MOF aerogels, which enhance their functional properties. The manifold advantages of MOF-based aerogels in energy storage, adsorption, and catalysis are discussed, with an emphasizing on their improved stability, processability, and ease of handling. This review aims to unlock the potential of MOF-based aerogels and their real-world applications. Aerogels are expected to reshape the technological landscape of MOFs through enhanced stability, adaptability, and efficiency.
Collapse
Affiliation(s)
- Tianyu Guo
- Bioproducts Institute, Department of Chemical & Biological Engineering, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, China
| | - Hossein Mashhadimoslem
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Leila Choopani
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Mohammad Mehdi Salehi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Ali Elkamel
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Aiping Yu
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Qi Zhang
- Zhejiang Kaifeng New Material Limited by Share Ltd. Longyou, Kaifeng, 324404, China
| | - Junlong Song
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, China
| | - Yongcan Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, China
| | - Orlando J Rojas
- Bioproducts Institute, Department of Chemical & Biological Engineering, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
- Department of Wood Science, The University of British Columbia, 2900-2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
| |
Collapse
|
3
|
Jin R, Zhou Z, Liu J, Shi B, Zhou N, Wang X, Jia X, Guo D, Xu B. Aerogels for Thermal Protection and Their Application in Aerospace. Gels 2023; 9:606. [PMID: 37623061 PMCID: PMC10453839 DOI: 10.3390/gels9080606] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 08/26/2023] Open
Abstract
With the continuous development of the world's aerospace industry, countries have put forward higher requirements for thermal protection materials for aerospace vehicles. As a nano porous material with ultra-low thermal conductivity, aerogel has attracted more and more attention in the thermal insulation application of aerospace vehicles. At present, the summary of aerogel used in aerospace thermal protection applications is not comprehensive. Therefore, this paper summarizes the research status of various types of aerogels for thermal protection (oxide aerogels, organic aerogels, etc.), summarizes the hot issues in the current research of various types of aerogels for thermal protection, and puts forward suggestions for the future development of various aerogels. For oxide aerogels, it is necessary to further increase their use temperature and inhibit the sintering of high-temperature resistant components. For organic aerogels, it is necessary to focus on improving the anti-ablation, thermal insulation, and mechanical properties in long-term aerobic high-temperature environments, and on this basis, find cheap raw materials to reduce costs. For carbon aerogels, it is necessary to further explore the balanced relationship between oxidation resistance, mechanics, and thermal insulation properties of materials. The purpose of this paper is to provide a reference for the further development of more efficient and reliable aerogel materials for aerospace applications in the future.
Collapse
Affiliation(s)
- Runze Jin
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China; (R.J.); (Z.Z.); (B.S.); (N.Z.); (X.W.); (X.J.); (D.G.)
- Beijing Key Laboratory of Lightweight Multi-Functional Composite Materials and Structures, Beijing Institute of Technology, Beijing 100081, China
| | - Zihan Zhou
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China; (R.J.); (Z.Z.); (B.S.); (N.Z.); (X.W.); (X.J.); (D.G.)
- Beijing Key Laboratory of Lightweight Multi-Functional Composite Materials and Structures, Beijing Institute of Technology, Beijing 100081, China
| | - Jia Liu
- Beijing Spacecrafts, China Academy of Space Technology, Beijing 100191, China
| | - Baolu Shi
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China; (R.J.); (Z.Z.); (B.S.); (N.Z.); (X.W.); (X.J.); (D.G.)
- Beijing Key Laboratory of Lightweight Multi-Functional Composite Materials and Structures, Beijing Institute of Technology, Beijing 100081, China
| | - Ning Zhou
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China; (R.J.); (Z.Z.); (B.S.); (N.Z.); (X.W.); (X.J.); (D.G.)
- Beijing Key Laboratory of Lightweight Multi-Functional Composite Materials and Structures, Beijing Institute of Technology, Beijing 100081, China
| | - Xinqiao Wang
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China; (R.J.); (Z.Z.); (B.S.); (N.Z.); (X.W.); (X.J.); (D.G.)
- Beijing Key Laboratory of Lightweight Multi-Functional Composite Materials and Structures, Beijing Institute of Technology, Beijing 100081, China
| | - Xinlei Jia
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China; (R.J.); (Z.Z.); (B.S.); (N.Z.); (X.W.); (X.J.); (D.G.)
- Beijing Key Laboratory of Lightweight Multi-Functional Composite Materials and Structures, Beijing Institute of Technology, Beijing 100081, China
| | - Donghui Guo
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China; (R.J.); (Z.Z.); (B.S.); (N.Z.); (X.W.); (X.J.); (D.G.)
- Beijing Key Laboratory of Lightweight Multi-Functional Composite Materials and Structures, Beijing Institute of Technology, Beijing 100081, China
| | - Baosheng Xu
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China; (R.J.); (Z.Z.); (B.S.); (N.Z.); (X.W.); (X.J.); (D.G.)
- Beijing Key Laboratory of Lightweight Multi-Functional Composite Materials and Structures, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
4
|
Xiao X, Panahi-Sarmad M, Xu R, Wang A, Cao S, Zhang K, Kamkar M, Noroozi M. Aerogels with shape memory ability: Are they practical? —A mini-review. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Panahi-Sarmad M, Noroozi M, Xiao X, Park CB. Recent Advances in Graphene-Based Polymer Nanocomposites and Foams for Electromagnetic Interference Shielding Applications. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04116] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Mahyar Panahi-Sarmad
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Microcellular Plastics Manufacturing Laboratory, Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Mina Noroozi
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Microcellular Plastics Manufacturing Laboratory, Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Xueliang Xiao
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Chul B. Park
- Microcellular Plastics Manufacturing Laboratory, Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| |
Collapse
|
6
|
Aghvami-Panah M, Panahi-Sarmad M, Seraji AA, Jamalpour S, Ghaffarian SR, Park CB. LDPE/MWCNT and LDPE/MWCNT/UHMWPE self-reinforced fiber-composite foams prepared via supercritical CO2: A microstructure-engineering property perspective. J Supercrit Fluids 2021. [DOI: 10.1016/j.supflu.2021.105248] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Seraji MM, Arefazar A. Microstructural properties, thermal insulation and thermal degradation behavior of b
oron‐containing
monolithic novolac xerogels. J Appl Polym Sci 2021. [DOI: 10.1002/app.50217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Mohammad Mehdi Seraji
- Department of Polymer Engineering and Color Technology Amirkabir University of Technology Tehran Iran
| | - Ahmad Arefazar
- Department of Polymer Engineering and Color Technology Amirkabir University of Technology Tehran Iran
| |
Collapse
|
8
|
Dehghan P, Noroozi M, Sadeghi GMM, Abrisham M, Amirkiai A, Panahi‐Sarmad M. Synthesis and design of polyurethane and its nanocomposites derived from
canola‐castor
oil: Mechanical, thermal and shape memory properties. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20200474] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Parham Dehghan
- Department of Polymer Engineering and Color Technology Amirkabir University of Technology Tehran Iran
| | - Mina Noroozi
- Polymer Engineering Department, Faculty of Chemical Engineering Tarbiat Modares University Tehran Iran
| | - Gity Mir Mohamad Sadeghi
- Department of Polymer Engineering and Color Technology Amirkabir University of Technology Tehran Iran
| | - Mahbod Abrisham
- Department of Polymer Engineering and Color Technology Amirkabir University of Technology Tehran Iran
| | - Arian Amirkiai
- Department of Polymer Engineering and Color Technology Amirkabir University of Technology Tehran Iran
| | - Mahyar Panahi‐Sarmad
- Polymer Engineering Department, Faculty of Chemical Engineering Tarbiat Modares University Tehran Iran
| |
Collapse
|
9
|
Lovskaya D, Menshutina N, Mochalova M, Nosov A, Grebenyuk A. Chitosan-Based Aerogel Particles as Highly Effective Local Hemostatic Agents. Production Process and In Vivo Evaluations. Polymers (Basel) 2020; 12:E2055. [PMID: 32927608 PMCID: PMC7570265 DOI: 10.3390/polym12092055] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 12/17/2022] Open
Abstract
Chitosan aerogels with potential applications as effective local hemostatic agents were prepared using supercritical carbon dioxide drying to preserve the chitosan network structure featuring high internal surfaces and porosities of up to 300 m²/g and 98%, respectively. For the first time, hemostatic efficacy of chitosan-based aerogel particles was studied in vivo on a model of damage of a large vessel in the deep wound. Pigs were used as test animals. It was shown that primary hemostasis was achieved, there were no signs of rebleeding and aerogel particles were tightly fixed to the walls of the wound canal. A dense clot was formed inside the wound (at the femoral artery), which indicates stable hemostasis. This study demonstrated that chitosan-based aerogel particles have a high sorption capacity and are highly effective as local hemostatic agents which can be used to stop massive bleeding.
Collapse
Affiliation(s)
- Daria Lovskaya
- International Center for transfer of Pharmaceutical and Biotechnology, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia; (N.M.); (M.M.)
| | - Natalia Menshutina
- International Center for transfer of Pharmaceutical and Biotechnology, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia; (N.M.); (M.M.)
| | - Maria Mochalova
- International Center for transfer of Pharmaceutical and Biotechnology, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia; (N.M.); (M.M.)
| | - Artem Nosov
- Department of Pharmaceutical Chemistry, Saint Petersburg State Chemical Pharmaceutical University, 197376 Saint Petersburg, Russia; (A.N.); (A.G.)
| | - Alexander Grebenyuk
- Department of Pharmaceutical Chemistry, Saint Petersburg State Chemical Pharmaceutical University, 197376 Saint Petersburg, Russia; (A.N.); (A.G.)
| |
Collapse
|