1
|
Baig N, Shetty S, Abdul Wahed S, Hassan A, Das N, Alameddine B. Promising CO 2 Capture and Effective Iodine Adsorption of Hyper-Cross-Linked Conjugated Porous Organic Polymers Prepared from a Cyclopentannulation Reaction. ACS APPLIED MATERIALS & INTERFACES 2025; 17:17783-17793. [PMID: 38606871 DOI: 10.1021/acsami.4c02948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Three novel conjugated porous organic polymers, denoted as C-POP1-3 and which consist of alternating pyrene cores with various contorted fluorene surrogates, were successfully synthesized from a versatile one-pot palladium-catalyzed [3+2] cyclocondensation reaction. The resulting polymers were obtained in excellent yields and displayed weight-average molecular weights (Mw) ranging from 12.2 to 20.2 kg/mol with polydispersity indices (Mw/Mn) ranging between 1.8 and 2.4, suggesting that the molecular masses are narrowly distributed and thus implying homogeneous polymer chains. Thermal stability exploration of C-POP1-3 by thermogravimetric analysis (TGA) revealed an impressive robustness with a 10% weight reduction temperature attaining 485 °C. Investigation of the inherent microporosity properties of C-POP1-3 via nitrogen adsorption experiments using Brunauer-Emmett-Teller (BET) theory discloses their surface areas which reach up to 560 m2 g-1 and pore volumes averaging 0.47 cm3 g-1. The target conjugated polymers were explored as adsorbents disclosing a maximum carbon dioxide adsorption of 83.0 mg g-1 at 273 K and low pressure for C-POP1, whereas iodine sorption tests portrayed prominent outcomes, notably for C-POP3 which proved to owe a strong affinity toward the hitherto mentioned halogen by achieving a maximum adsorption of 2220 mg g-1. Additionally, recyclability experiments confirmed the possibility to regenerate the polymers' adsorption capabilities even after seven consecutive cycles of adsorption-desorption cycles, which qualify them as auspicious iodine adsorbents.
Collapse
Affiliation(s)
- Noorullah Baig
- Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Mubarak Al-Abdullah 32093, Kuwait
- Functional Materials Group, Gulf University for Science and Technology, Mubarak Al-Abdullah 32093, Kuwait
| | - Suchetha Shetty
- Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Mubarak Al-Abdullah 32093, Kuwait
- Functional Materials Group, Gulf University for Science and Technology, Mubarak Al-Abdullah 32093, Kuwait
| | - Sk Abdul Wahed
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801106, Bihar, India
| | - Atikur Hassan
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801106, Bihar, India
| | - Neeladri Das
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801106, Bihar, India
| | - Bassam Alameddine
- Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Mubarak Al-Abdullah 32093, Kuwait
- Functional Materials Group, Gulf University for Science and Technology, Mubarak Al-Abdullah 32093, Kuwait
| |
Collapse
|
2
|
Baig N, Shetty S, Bargakshatriya R, Pramanik SK, Alameddine B. Efficient Iodine Uptake of Ultra Thermally Stable Conjugated Copolymers Bearing Biaceanthrylenyl Moieties and Contorted Aromatic Units Using a [3 + 2] Palladium-Catalyzed Cyclopolymerization Reaction. ACS OMEGA 2023; 8:43227-43235. [PMID: 38024763 PMCID: PMC10653061 DOI: 10.1021/acsomega.3c07108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023]
Abstract
A novel series of copolymers made from alternating aromatic surrogates with contorted and spiro compounds, denoted as BCP1-3, was successfully synthesized employing a palladium-catalyzed one-pot [3 + 2] cyclopentannulation reaction. The resulting copolymers BCP1-3, which were isolated in high yields, exhibited weight-average molecular weights (Mw) ranging from 11.0 to 61.5 kg mol-1 (kDa) and polydispersity index (Mw/Mn) values in the range of 1.7 and 2.0, which suggest a narrow molecular weight distribution, thus indicating the formation of uniform copolymer chains. Investigation of the thermal properties of BCP1-3 by thermogravimetric analysis disclosed outstanding stability with 10% weight loss temperature values reaching 800 °C. Iodine adsorption tests revealed remarkable results, particularly for BCP2, which demonstrated a strong affinity toward iodine reaching an uptake of 2900 mg g-1. Additionally, recyclability tests showcased the effective regeneration of BCP2 after several successive iodine adsorption-desorption cycles.
Collapse
Affiliation(s)
- Noorullah Baig
- Department
of Mathematics and Natural Sciences, Gulf
University for Science and Technology, Mubarak Al-Abdullah ,Hawally32093, Kuwait
- Functional
Materials Group, Gulf University for Science
and Technology, Mubarak Al-Abdullah ,Hawally32093, Kuwait
| | - Suchetha Shetty
- Department
of Mathematics and Natural Sciences, Gulf
University for Science and Technology, Mubarak Al-Abdullah ,Hawally32093, Kuwait
- Functional
Materials Group, Gulf University for Science
and Technology, Mubarak Al-Abdullah ,Hawally32093, Kuwait
| | - Rupa Bargakshatriya
- CSIR-Central
Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar, Gujarat 364002, India
| | - Sumit Kumar Pramanik
- CSIR-Central
Salt and Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar, Gujarat 364002, India
| | - Bassam Alameddine
- Department
of Mathematics and Natural Sciences, Gulf
University for Science and Technology, Mubarak Al-Abdullah ,Hawally32093, Kuwait
- Functional
Materials Group, Gulf University for Science
and Technology, Mubarak Al-Abdullah ,Hawally32093, Kuwait
| |
Collapse
|
3
|
Shi N, Zheng M, Wu X, Chen N, Jiang L, Chang B, Lu F, Liu F. Construction and Catalytic Study of Affinity Peptide Orientation and Light Crosslinking Immobilized Sucrose Isomerase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13401-13408. [PMID: 37647235 DOI: 10.1021/acs.jafc.3c02644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
A novel affinity peptide orientation and light-controlled covalent immobilized method was developed. Sucrose isomerase (SI) was selected as the model enzyme. Molecular simulation was first performed to select the targeted immobilization region. Subsequently, a short peptide (H2N-VNIGGX-COOH, VG) with high affinity to this region was rationally designed. Thereafter, 4-benzoyl-l-phenylalanine with the photosensitive group of benzophenone was introduced. Then, the affinity between the ligand and the SI was validated using molecular dynamics simulation. Thereafter, the SI was directionally immobilized onto the surface of the epoxy resin (EP) guided by VG via photo-crosslinking, and thus the oriented photo-crosslinking enzymes were obtained. The enzymatic activity, thermostability, and reusability of the affinity directional photo-crosslinked immobilized sucrose isomerase (hv-EP-VG-SI) were systematically studied. The oriented immobilization enzymes were significantly improved in recycling and heat resistance. Moreover, hv-EP-VG-SI retained more than 90% of the original activity and 50% of the activity after 11 cycles.
Collapse
Affiliation(s)
- Nian Shi
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, National Engineering Laboratory for Industrial Enzymes, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Mingqiang Zheng
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, National Engineering Laboratory for Industrial Enzymes, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xinming Wu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, National Engineering Laboratory for Industrial Enzymes, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ning Chen
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, National Engineering Laboratory for Industrial Enzymes, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Luying Jiang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, National Engineering Laboratory for Industrial Enzymes, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Baogen Chang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, National Engineering Laboratory for Industrial Enzymes, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, National Engineering Laboratory for Industrial Enzymes, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Fufeng Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, National Engineering Laboratory for Industrial Enzymes, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
4
|
Baig N, Shetty S, Al-Mousawi S, Alameddine B. Conjugated microporous polymers using a copper-catalyzed [4 + 2] cyclobenzannulation reaction: promising materials for iodine and dye adsorption. Polym Chem 2021. [DOI: 10.1039/d1py00193k] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A new design strategy is disclosed to synthesize conjugated microporous polymers using a Cu-catalyzed [4 + 2] cyclobenzannulation reaction. The polymers reveal BET surface areas up to 794 m2 g−1 and promising uptake of iodine and methylene blue.
Collapse
Affiliation(s)
- Noorullah Baig
- Department of Mathematics and Natural Sciences
- Gulf University for Science and Technology
- Kuwait
- Functional Materials Group – CAMB
- GUST
| | - Suchetha Shetty
- Department of Mathematics and Natural Sciences
- Gulf University for Science and Technology
- Kuwait
- Functional Materials Group – CAMB
- GUST
| | | | - Bassam Alameddine
- Department of Mathematics and Natural Sciences
- Gulf University for Science and Technology
- Kuwait
- Functional Materials Group – CAMB
- GUST
| |
Collapse
|
5
|
Baig N, Shetty S, Al-Mousawi S, Alameddine B. Synthesis of conjugated polymers via cyclopentannulation reaction: promising materials for iodine adsorption. Polym Chem 2020. [DOI: 10.1039/d0py00286k] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A new class of conjugated polymers is prepared by means of a versatile palladium-catalyzed cyclopentannulation reaction using a series of specially designed diethynyl aryl synthons with the commercially available 9,10-dibromoanthracene DBA monomer.
Collapse
Affiliation(s)
- Noorullah Baig
- Department of Mathematics and Natural Sciences
- Gulf University for Science and Technology (GUST)
- Kuwait
- Functional Materials Group – CAMB
- GUST
| | - Suchetha Shetty
- Department of Mathematics and Natural Sciences
- Gulf University for Science and Technology (GUST)
- Kuwait
- Functional Materials Group – CAMB
- GUST
| | | | - Bassam Alameddine
- Department of Mathematics and Natural Sciences
- Gulf University for Science and Technology (GUST)
- Kuwait
- Functional Materials Group – CAMB
- GUST
| |
Collapse
|
6
|
Baig N, Shetty S, Fall S, Al-Mousawi S, Heiser T, Alameddine B. Conjugated copolymers bearing 2,7-dithienylphenanthrene-9,10-dialkoxy units: highly soluble and stable deep-blue emissive materials. NEW J CHEM 2020. [DOI: 10.1039/d0nj01712d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Excellent yields, high stability and solubility. Mw = 36.5–152.0 kDa and Đ = 2.5–3.0. Deep-blue emission with quantum yields up to 17%.
Collapse
Affiliation(s)
- Noorullah Baig
- Department of Mathematics and Natural Sciences, Gulf University for Science and Technology (GUST)
- Kuwait
- Functional Materials group
- GUST
- CAMB
| | - Suchetha Shetty
- Department of Mathematics and Natural Sciences, Gulf University for Science and Technology (GUST)
- Kuwait
- Functional Materials group
- GUST
- CAMB
| | - Sadiara Fall
- Laboratoire ICube
- Université de Strasbourg
- CNRS
- UMR 7357
- Strasbourg
| | | | - Thomas Heiser
- Laboratoire ICube
- Université de Strasbourg
- CNRS
- UMR 7357
- Strasbourg
| | - Bassam Alameddine
- Department of Mathematics and Natural Sciences, Gulf University for Science and Technology (GUST)
- Kuwait
- Functional Materials group
- GUST
- CAMB
| |
Collapse
|