1
|
Wang Z, Zhang K, Wang H, Wu X, Wang H, Weng C, Li Y, Liu S, Yang J. Strengthening Interfacial Adhesion and Foamability of Immiscible Polymer Blends via Rationally Designed Reactive Macromolecular Compatibilizers. ACS APPLIED MATERIALS & INTERFACES 2022; 14:45832-45843. [PMID: 36169636 DOI: 10.1021/acsami.2c12383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Foams made of immiscible polymer blends have attracted great interest in both academia and industry, because of the integration of desirable properties of different polymers in a hybrid foam. However, the foamability and end-use properties are hampered because of the poor interfacial strength within the immiscible blends. Furthermore, few investigations have been carried out on the mechanisms by which interfacial strength and structure affect the foamability of polymer blends. In this work, two different reactive interfacial compatibilizers, i.e., poly(styrene-co-glycidyl methacrylate)-graft-poly(l-lactide) and poly(styrene-co-glycidyl methacry-late)-graft-poly(d-lactide), abbreviated as SG-g-PLLA and SG-g-PDLA, respectively, were designed and synthesized through reactive melt blending and subsequently applied to strengthen the interfacial strength and foamability of immiscible poly(butylene adipate-co-terephthalate) (PBAT)/poly(l-lactide) (PLLA) blends. Both compatibilizers could remarkably enhance the interfacial strength and foamability of the PBAT/PLLA blends, as evidenced by the significantly elongated dispersed phase in the resulting cocontinuous phase and more than 7000-fold increase in the cell density. Furthermore, the improved foamability was quantitively explained by the reduced gas diffusion and increased melt strength. Strikingly, the SG-g-PDLA introduced a stereocomplex crystal at the interface (i-SC), providing highly strengthened interfaces and nanoscale heterogeneous nucleation sites, which led to an energetically favorable cell nucleation. Moreover, foams with specifically laminated cell structures were fabricated by combining pressure-induced flow processing and i-SC strengthened interfaces. This work provides insight into the relationship between interfacial strength and formability of immiscible polymer blends and offers new possibilities for controlling cell morphologies and designing unique cell structures for polymer foams.
Collapse
Affiliation(s)
- Zhen Wang
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, P. R. China
| | - Kailiang Zhang
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, P. R. China
| | - Hengti Wang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Xinyu Wu
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, P. R. China
| | - Hanyu Wang
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, P. R. China
| | - Chenglong Weng
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, P. R. China
| | - Yongjin Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Shanqiu Liu
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, P. R. China
| | - Jintao Yang
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, P. R. China
| |
Collapse
|
2
|
Merillas B, Vareda JP, Martín-de León J, Rodríguez-Pérez MÁ, Durães L. Thermal Conductivity of Nanoporous Materials: Where Is the Limit? Polymers (Basel) 2022; 14:2556. [PMID: 35808603 PMCID: PMC9269606 DOI: 10.3390/polym14132556] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023] Open
Abstract
Nowadays, our society is facing problems related to energy availability. Owing to the energy savings that insulators provide, the search for effective insulating materials is a focus of interest. Since the current insulators do not meet the increasingly strict requirements, developing materials with a greater insulating capacity is needed. Until now, several nanoporous materials have been considered as superinsulators achieving thermal conductivities below that of the air 26 mW/(m K), like nanocellular PMMA/TPU, silica aerogels, and polyurethane aerogels reaching 24.8, 10, and 12 mW/(m K), respectively. In the search for the minimum thermal conductivity, still undiscovered, the first step is understanding heat transfer in nanoporous materials. The main features leading to superinsulation are low density, nanopores, and solid interruptions hindering the phonon transfer. The second crucial condition is obtaining reliable thermal conductivity measurement techniques. This review summarizes these techniques, and data in the literature regarding the structure and thermal conductivity of two nanoporous materials, nanocellular polymers and aerogels. The key conclusion of this analysis specifies that only steady-state methods provide a reliable value for thermal conductivity of superinsulators. Finally, a theoretical discussion is performed providing a detailed background to further explore the lower limit of superinsulation to develop more efficient materials.
Collapse
Affiliation(s)
- Beatriz Merillas
- Cellular Materials Laboratory (CellMat), Department of Condensed Material Physics, Facultad de Ciencias, University of Valladolid, 47011 Valladolid, Spain; (B.M.); (J.M.-d.L.); (M.Á.R.-P.)
| | - João Pedro Vareda
- University of Coimbra, Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, Rua Sílvio Lima, 3030-790 Coimbra, Portugal;
| | - Judith Martín-de León
- Cellular Materials Laboratory (CellMat), Department of Condensed Material Physics, Facultad de Ciencias, University of Valladolid, 47011 Valladolid, Spain; (B.M.); (J.M.-d.L.); (M.Á.R.-P.)
| | - Miguel Ángel Rodríguez-Pérez
- Cellular Materials Laboratory (CellMat), Department of Condensed Material Physics, Facultad de Ciencias, University of Valladolid, 47011 Valladolid, Spain; (B.M.); (J.M.-d.L.); (M.Á.R.-P.)
- BioEcoUVA Research Institute on Bioeconomy, University of Valladolid, 47011 Valladolid, Spain
| | - Luisa Durães
- University of Coimbra, Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, Rua Sílvio Lima, 3030-790 Coimbra, Portugal;
| |
Collapse
|
3
|
Martín-de León J, Jiménez M, Pura J, Bernardo V, Rodriguez-Pérez M. Easy-way production of highly transparent nanocellular polymers films. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
4
|
Advanced Nanocellular Foams: Perspectives on the Current Knowledge and Challenges. NANOMATERIALS 2021; 11:nano11030621. [PMID: 33801500 PMCID: PMC7998970 DOI: 10.3390/nano11030621] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 11/16/2022]
|