1
|
Adeniyi A, Odo GO, Gonzalez-Ortiz D, Pochat-Bohatier C, Mbakop S, Onyango MS. A Comparison of the Effect of Cellulose Nanocrystals (CNCs) and Polyethylene Glycol (PEG) as Additives in Ultrafiltration Membranes (PES-UF): Characterization and Performance. Polymers (Basel) 2023; 15:2636. [PMID: 37376282 DOI: 10.3390/polym15122636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/26/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
This work demonstrated the potential of CNC as a substitute for PEG as an additive in ultrafiltration membrane fabrication. Two sets of modified membranes were fabricated using the phase inversion technique, with polyethersulfone (PES) as the base polymer and 1-N-methyl-2 pyrrolidone (NMP) as the solvent. The first set was fabricated with 0.075 wt% CNC, while the second set was fabricated with 2 wt% PEG. All membranes were characterized using SEM, EDX, FTIR, and contact angle measurements. The SEM images were analyzed for surface characteristics using WSxM 5.0 Develop 9.1 software. The membranes were tested, characterized, and compared for their performance in treating both synthetic and real restaurant wastewater. Both membranes exhibited improved hydrophilicity, morphology, pore structure, and roughness. Both membranes also exhibited similar water flux for real and synthetic polluted water. However, the membrane prepared with CNC gave higher turbidity removal and COD removal when raw restaurant water was treated. The membrane compared well with the UF membrane containing 2 wt% PEG in terms of morphology and performance when synthetic turbid water and raw restaurant water were treated.
Collapse
Affiliation(s)
- Amos Adeniyi
- Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Pretoria 0183, South Africa
- Water for Rural Communities (WARUC), Pretoria 0002, South Africa
| | - Gerald Oke Odo
- Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Pretoria 0183, South Africa
| | - Danae Gonzalez-Ortiz
- Institut Européen des Membranes, IEM UMR-5635, Université de Montpellier, ENSCM, CNRS Place Eugène Bataillon, CEDEX 5, 34095 Montpellier, France
| | - Celine Pochat-Bohatier
- Institut Européen des Membranes, IEM UMR-5635, Université de Montpellier, ENSCM, CNRS Place Eugène Bataillon, CEDEX 5, 34095 Montpellier, France
| | - Sandrine Mbakop
- Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Pretoria 0183, South Africa
| | - Maurice Stephen Onyango
- Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Pretoria 0183, South Africa
| |
Collapse
|
2
|
Boruah P, Gupta R, Katiyar V. Fabrication of cellulose nanocrystal (CNC) from waste paper for developing antifouling and high-performance polyvinylidene fluoride (PVDF) membrane for water purification. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2023. [DOI: 10.1016/j.carpta.2023.100309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
|
3
|
Effect of solvents in the formation of PES-based asymmetric flat sheet membranes in phase inversion method: phase separation and rheological studies. IRANIAN POLYMER JOURNAL 2023. [DOI: 10.1007/s13726-022-01131-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
4
|
Bai L, Ding A, Li G, Liang H. Application of cellulose nanocrystals in water treatment membranes: A review. CHEMOSPHERE 2022; 308:136426. [PMID: 36113655 DOI: 10.1016/j.chemosphere.2022.136426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
Nanomaterials have brought great changes to human society, and development has gradually shifted the focus to environmentally friendly applications. Cellulose nanocrystals (CNCs) are new one-dimensional nanomaterials that exhibit environmental friendliness and ensure the biological safety of water environment. CNCs have excellent physical and chemical properties, such as simple preparation process, nanoscale size, high specific surface area, high mechanical strength, good biocompatibility, high hydrophilicity and antifouling ability. Because of these characteristics, CNCs are widely used in ultrafiltration membranes, nanofiltration membranes and reverse osmosis membranes to solve the problems hindering development of membrane technology, such as insufficient interception and separation efficiency, low mechanical strength and poor antifouling performance. This review summarizes recent developments and uses of CNCs in water treatment membranes and discusses the challenges and development prospects of CNCs materials from the perspectives of ecological safety and human health by comparing them with traditional one-dimensional nanomaterials.
Collapse
Affiliation(s)
- Langming Bai
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Aiming Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Guibai Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
5
|
Zhang L, Zhang H, Jiang J, Zhao D, Shen C, Zha S, Qu S, Lin R, Wang Y, Dai G. Rheological behavior of
PES
/
PVP
/
DMAc
solution and
PVP
structural regulation for hollow fiber membrane. J Appl Polym Sci 2022. [DOI: 10.1002/app.52870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Lu Zhang
- State Key Laboratory of Chemical Engineering East China University of Science and Technology (ECUST) Shanghai China
| | - Haoran Zhang
- State Key Laboratory of Chemical Engineering East China University of Science and Technology (ECUST) Shanghai China
| | - Jinhu Jiang
- State Key Laboratory of Chemical Engineering East China University of Science and Technology (ECUST) Shanghai China
| | - Dong Zhao
- State Key Laboratory of Chemical Engineering East China University of Science and Technology (ECUST) Shanghai China
| | - Chunyin Shen
- State Key Laboratory of Chemical Engineering East China University of Science and Technology (ECUST) Shanghai China
| | - Shangwen Zha
- Department of Research and development Shanghai Eco. Polymer Sci.&Tech CO., Ltd Shanghai China
| | - Shaoyi Qu
- Department of Research and development Shanghai Eco. Polymer Sci.&Tech CO., Ltd Shanghai China
| | - Ru Lin
- Department of Research and development Shanghai Eco. Polymer Sci.&Tech CO., Ltd Shanghai China
| | - Yanli Wang
- State Key Laboratory of Chemical Engineering East China University of Science and Technology (ECUST) Shanghai China
| | - Gance Dai
- State Key Laboratory of Chemical Engineering East China University of Science and Technology (ECUST) Shanghai China
| |
Collapse
|
6
|
Zhan Y, Zhang G, Feng Q, Yang W, Hu J, Wen X, Liu Y, Zhang S, Sun A. Fabrication of durable super-hydrophilic/underwater super-oleophobic poly(arylene ether nitrile) composite membrane via biomimetic co-deposition for multi-component oily wastewater separation in harsh environments. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126754] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
7
|
Nazri AI, Ahmad AL, Hussin MH. Microcrystalline Cellulose-Blended Polyethersulfone Membranes for Enhanced Water Permeability and Humic Acid Removal. MEMBRANES 2021; 11:660. [PMID: 34564477 PMCID: PMC8467366 DOI: 10.3390/membranes11090660] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/18/2021] [Accepted: 08/21/2021] [Indexed: 11/30/2022]
Abstract
A novel polyethersulfone (PES)/microcrystalline cellulose (MCC) composite membrane for humic acid (HA) removal in water was fabricated using the phase inversion method by blending hydrophilic MCC with intrinsically hydrophobic PES in a lithium chloride/N,N-dimethylacetamide (LiCl/DMAc) co-solvent system. A rheological study indicated that the MCC-containing casting solutions exhibited a significant increase in viscosity, which directly influenced the composite membrane's pore structure. Compared to the pristine PES membrane, the composite membranes have a larger surface pore size, elongated finger-like structure, and presence of sponge-like pores. The water contact angle and pure water flux of the composite membranes indicated an increase in hydrophilicity of the modified membranes. However, the permeability of the composite membranes started to decrease at 3 wt.% MCC and beyond. The natural organic matter removal experiments were performed using humic acid (HA) as the surface water pollutant. The hydrophobic HA rejection was significantly increased by the enhanced hydrophilic PES/MCC composite membrane via the hydrophobic-hydrophilic interaction and pore size exclusion. This study provides insight into the utilization of a low-cost and environmentally friendly additive to improve the hydrophilicity of PES membranes for efficient removal of HA in water.
Collapse
Affiliation(s)
- Amirul Islah Nazri
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal 14300, Pulau Pinang, Malaysia;
| | - Abdul Latif Ahmad
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal 14300, Pulau Pinang, Malaysia;
| | - Mohd Hazwan Hussin
- School of Chemical Sciences, Universiti Sains Malaysia, Gelugor 11800, Pulau Pinang, Malaysia;
| |
Collapse
|
8
|
Preparation of High-Performance Polyethersulfone/Cellulose Nanocrystal Nanocomposite Fibers via Dry-Jet Wet Spinning. Macromol Res 2021. [DOI: 10.1007/s13233-021-9001-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
9
|
|
10
|
Yadav C, Saini A, Zhang W, You X, Chauhan I, Mohanty P, Li X. Plant-based nanocellulose: A review of routine and recent preparation methods with current progress in its applications as rheology modifier and 3D bioprinting. Int J Biol Macromol 2020; 166:1586-1616. [PMID: 33186649 DOI: 10.1016/j.ijbiomac.2020.11.038] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/20/2020] [Accepted: 11/06/2020] [Indexed: 02/07/2023]
Abstract
"Nanocellulose" have captivated the topical sphere of sturdily escalating market for sustainable materials. The review focuses on the comprehensive understanding of the distinct surface chemistry and functionalities pertaining to the renovation of macro-cellulose at nanodimensional scale to provide an intuition of their processing-structure-function prospective. The abundant availability, cost effectiveness and diverse properties associated with plant-based resources have great economical perspective for developing sustainable cellulose nanomaterials. Hence, emphasis has been given on nanocellulose types obtained from plant-based sources. An overarching goal is to provide the recent advancement in the preparation routes of nanocellulose. Considering the excellent shear thinning/thixotropic/gel-like behavior, the review provids an assemblage of publications specifically dealing with its application as rheology modifier with emphasis on its use as bioink for 3D bioprinting for various biomedical applications. Altogether, this review has been oriented in a way to collocate a collective data starting from the historical perspective of cellulose discovery to modern cellulosic chemistry and its renovation as nanocellulose with recent technological hype for broad spanning applications.
Collapse
Affiliation(s)
- Chandravati Yadav
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, PR China.
| | - Arun Saini
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, PR China
| | - Wenbo Zhang
- Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry & Technology, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, PR China
| | - Xiangyu You
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, PR China
| | - Indu Chauhan
- Department of Biotechnology, Dr B. R. Ambedkar National Institute of Technology, Jalandhar 144011, Punjab, India
| | - Paritosh Mohanty
- Functional Materials Laboratory, Department of Chemistry, IIT Roorkee, Roorkee 247667, Uttarakhand, India
| | - Xinping Li
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, PR China.
| |
Collapse
|
11
|
Structure and properties of lipase activated by cellulose-silica polyethersulfone membrane for production of pentyl valerate. Carbohydr Polym 2020; 245:116549. [DOI: 10.1016/j.carbpol.2020.116549] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/29/2020] [Accepted: 05/29/2020] [Indexed: 12/18/2022]
|
12
|
Wu B, Wang S, Wang J, Song X, Zhou Y, Gao C. Facile Fabrication of High-Performance Thin Film Nanocomposite Desalination Membranes Imbedded with Alkyl Group-Capped Silica Nanoparticles. Polymers (Basel) 2020; 12:polym12061415. [PMID: 32599914 PMCID: PMC7361704 DOI: 10.3390/polym12061415] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/03/2020] [Accepted: 06/19/2020] [Indexed: 11/21/2022] Open
Abstract
The advantages of thin film nanocomposite reverse osmosis (TFN-RO) membranes have been demonstrated by numerous studies within the last decade. This study proposes a facile and novel method to tune the microscale and nanoscale structures, which has good potential to fabricate high-performance TFN-RO membranes. This method involves the addition of alkyl capped silica nanoparticles (alkyl-silica NPs) into the organic phase during interfacial polymerization (IP). We discovered for the first time that the high concentration alkyl-silica NPs in organic solvent isopar-G can limit the diffusion of MPD molecules at the interface, therefore shaping the intrinsic thickness and microstructures of the PA layer. Moreover, the alkyl group modification greatly reduces the NPs agglomeration and increases the compatibility between the NPs and the PA matrix. We further demonstrate that the doping of alkyl-silica NPs impacts the performance of the TFN-RO membrane by affecting intrinsic thickness, higher surface area, hydrophobic plugging effect, and higher surface charge by a series of characterization. At brackish water desalination conditions (2000 ppm NaCl, 1.55 MPa), the optimal brackish water flux was 55.3 L/m2∙h, and the rejection was maintained at 99.6%, or even exceeded this baseline. At seawater desalination conditions (32,000 ppm NaCl, 5.5 MPa), the optimized seawater flux reached 67.7 L/m2∙h, and the rejection was sustained at 99.4%. Moreover, the boron rejection was elevated by 11%, which benefits from a hydrophobic plugging effect of the alkyl groups.
Collapse
Affiliation(s)
- Biqin Wu
- Center for Membrane Separation and Water Science & Technology, Ocean College, Zhejiang University of Technology, Hangzhou 310014, China; (B.W.); (S.W.); (Y.Z.); (C.G.)
| | - Shuhao Wang
- Center for Membrane Separation and Water Science & Technology, Ocean College, Zhejiang University of Technology, Hangzhou 310014, China; (B.W.); (S.W.); (Y.Z.); (C.G.)
| | - Jian Wang
- Institute of Tianjin Seawater Desalination and Multipurpose Utilization, Ministry of Natural Resources, Tianjin 300192, China;
| | - Xiaoxiao Song
- Center for Membrane Separation and Water Science & Technology, Ocean College, Zhejiang University of Technology, Hangzhou 310014, China; (B.W.); (S.W.); (Y.Z.); (C.G.)
- Correspondence: ; Tel.: +86-182-6815-9040
| | - Yong Zhou
- Center for Membrane Separation and Water Science & Technology, Ocean College, Zhejiang University of Technology, Hangzhou 310014, China; (B.W.); (S.W.); (Y.Z.); (C.G.)
| | - Congjie Gao
- Center for Membrane Separation and Water Science & Technology, Ocean College, Zhejiang University of Technology, Hangzhou 310014, China; (B.W.); (S.W.); (Y.Z.); (C.G.)
| |
Collapse
|