1
|
The nucleation mechanism of 1-N',3-N'-dibenzoylbenzene-1,4-dicarbohydrazide as a nucleating agent for isotactic polypropylene. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03145-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
2
|
Tunable polymorphic crystal modification, phase transition and biodegradability of poly(1,4-butylene adipate) by a bio-derived metabolite with low molecular weight. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.109935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
3
|
Altorbaq AS, Krauskopf AA, Wen X, Pérez-Camargo RA, Su Y, Wang D, Müller AJ, Kumar SK. Crystallization Kinetics and Nanoparticle Ordering in Semicrystalline Polymer Nanocomposites. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101527] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
4
|
Jia C, Zhou S, Xie Z, Wang L, Yang Y, Sun X, Xie Y, Yang J. Crystallization kinetics, aggregated structure and thermal stability of biodegradable poly(ethylene succinate) manipulated by a biocompatible layered metal phosphonate as an efficient nucleator. POLYM INT 2021. [DOI: 10.1002/pi.6192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Chunfeng Jia
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering Tianjin University of Technology Tianjin China
| | - Shanshan Zhou
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering Tianjin University of Technology Tianjin China
| | - Zhanghua Xie
- Tianjin Nengpu Science and Technology Co. Ltd Huayuan Industrial Park Tianjin China
| | - Lukai Wang
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering Tianjin University of Technology Tianjin China
| | - Yubin Yang
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering Tianjin University of Technology Tianjin China
| | - Xiaoyu Sun
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering Tianjin University of Technology Tianjin China
| | - Yuhong Xie
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering Tianjin University of Technology Tianjin China
| | - Jinjun Yang
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering Tianjin University of Technology Tianjin China
| |
Collapse
|
5
|
Zhou S, Wei Z, Sun Y, Zhu Z, Xie Z, Ma H, Yin J, Wang J, Yang J. Biocompatible linear diamides derivative-nucleated biodegradable poly(ethylene succinate): Tailored crystallization kinetics, aggregated structure and thermal degradation. Polym Degrad Stab 2021. [DOI: 10.1016/j.polymdegradstab.2020.109428] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
6
|
Ma H, Wei Z, Zhou S, Zhu H, Tang J, Yin J, Yue J, Yang J. Supernucleation, crystalline structure and thermal stability of bacterially synthesized poly(3-hydroxybutyrate) polyester tailored by thymine as a biocompatible nucleating agent. Int J Biol Macromol 2020; 165:1562-1573. [PMID: 33058980 DOI: 10.1016/j.ijbiomac.2020.10.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/28/2020] [Accepted: 10/06/2020] [Indexed: 11/18/2022]
Abstract
Naturally occurring thymine (TM) was incorporated into bacterial poly(3-hydroxybutyrate) (PHB) polyester to fabricate a novel and green biocomposite. Both 0.5% and 1% TM exhibit supernucleation effect on PHB, and crystallization kinetics suggests TM significantly increased Tc and Xc, and substantially shortened t1/2 of PHB. Epitaxial nucleation caused by a perfect crystal lattice matching between PHB and TM, was proposed to elucidate nucleation mechanism of PHB. Hydrogen bond interaction exists between CO, C-O-C groups of PHB and -CH3 (or -CH)/-NH- group of TM. TM interacted with CO group of PHB crystalline phase rather than that of amorphous one. In addition, two new IR crystalline bands assigned to C-O-C group of PHB appeared in the presence of TM, which arises from shift of two amorphous ones, respectively. TM enhanced onset thermal degradation temperature of PHB, mainly attributed to increased degree of crystallinity of PHB and flame retardance effect of TM.
Collapse
Affiliation(s)
- Huimin Ma
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, 391 Binshui Xidao, Xiqing District, Tianjin 300384, China
| | - Ziyu Wei
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, 391 Binshui Xidao, Xiqing District, Tianjin 300384, China; CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China
| | - Shanshan Zhou
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, 391 Binshui Xidao, Xiqing District, Tianjin 300384, China
| | - Haibo Zhu
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, 391 Binshui Xidao, Xiqing District, Tianjin 300384, China; Tianjin Fire Research Institute of the Ministry of Emergency Management, Tianjin 300381, China
| | - Jingjing Tang
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, 391 Binshui Xidao, Xiqing District, Tianjin 300384, China
| | - Jing Yin
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, 391 Binshui Xidao, Xiqing District, Tianjin 300384, China
| | - Junjie Yue
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, 391 Binshui Xidao, Xiqing District, Tianjin 300384, China.
| | - Jinjun Yang
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, 391 Binshui Xidao, Xiqing District, Tianjin 300384, China.
| |
Collapse
|