1
|
Phan QT, Rabanel J, Mekhjian D, Saber J, Garcia Ac A, Zhang H, Gibson VP, Zaouter C, Hardy P, Patten SA, Boffito D, Banquy X. Core-Shell Bottlebrush Polymers: Unmatched Delivery of Small Active Compounds Deep Into Tissues. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408616. [PMID: 39679753 PMCID: PMC11798360 DOI: 10.1002/smll.202408616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/09/2024] [Indexed: 12/17/2024]
Abstract
The chemical structure of a delivery nanovehicle plays a pivotal role in determining the efficiency of drug delivery within the body. Leveraging the unique architecture of bottlebrush (BB) polymers-characterized by variations in backbone length, grafting density, and self-assembly morphology-offers a novel approach to understanding the influence of structural properties on biological behavior. In this study, developed a drug delivery system based on core-shell BB polymers synthesized using a "grafting-from" strategy. Comprehensive characterization techniques, including nuclear magnetic resonance (NMR), gel permeation chromatography (GPC), and atomic force microscopy (AFM), employed to confirm the polymers' structure. The BB polymers evaluated as carriers for molecules with differing hydrophobicity profiles, namely Rhodamine B and Paclitaxel. These nanocarriers systematically assessed for drug loading efficiency and penetration capabilities, compared to conventional polymeric micelles (PM) formed from linear amphiphilic polymers. BB-based nanocarriers exhibited superior cellular uptake in both 2D and 3D cell culture models when compared to PM. Furthermore, analysis of drug distribution and particle penetration highlighted the profound influence of polymer morphology on biological interactions. These findings underscore the potential of unimolecular carriers with precisely defined structures as promising drug delivery platforms for a wide range of biomedical applications.
Collapse
Affiliation(s)
- Quoc Thang Phan
- Faculty of PharmacyUniversité de Montréal2940 Chemin de PolytechniqueMontréalQuébecH3T 1J4Canada
| | - Jean‐Michel Rabanel
- Faculty of PharmacyUniversité de Montréal2940 Chemin de PolytechniqueMontréalQuébecH3T 1J4Canada
- School of Pharmaceutical SciencesFaculty of MedicineUniversity of OttawaRoger Guindon Hall, 451 Smyth RdOttawaOntarioK1H 8M5Canada
| | - Dikran Mekhjian
- Faculty of PharmacyUniversité de Montréal2940 Chemin de PolytechniqueMontréalQuébecH3T 1J4Canada
| | - Justine Saber
- Faculty of PharmacyUniversité de Montréal2940 Chemin de PolytechniqueMontréalQuébecH3T 1J4Canada
| | - Araceli Garcia Ac
- Faculty of PharmacyUniversité de Montréal2940 Chemin de PolytechniqueMontréalQuébecH3T 1J4Canada
| | - Hu Zhang
- Faculty of PharmacyUniversité de Montréal2940 Chemin de PolytechniqueMontréalQuébecH3T 1J4Canada
| | - Victor Passos Gibson
- Department of Pharmacology and PhysiologyUniversité de MontréalMontréalQuébecH3T 1J4Canada
| | - Charlotte Zaouter
- INRS Centre Armand‐Frappier Santé Biotechnologie531, boul. des PrairiesQuébecCanadaH7V 1B7
| | - Pierre Hardy
- Department of Pharmacology and PhysiologyUniversité de MontréalMontréalQuébecH3T 1J4Canada
| | | | - Daria Boffito
- Department of Chemical EngineeringPolytechnique Montréal2500 Chemin de PolytechniqueMontréalQuébecH3C 3A7Canada
| | - Xavier Banquy
- Faculty of PharmacyUniversité de Montréal2940 Chemin de PolytechniqueMontréalQuébecH3T 1J4Canada
- Biomedical Engineering InstituteUniversité de Montréal2940 Chemin de PolytechniqueMontréalQuébecH3T 1J4Canada
- Chemistry DepartmentFaculty of Arts and SciencesUniversité de Montréal2940 Chemin de PolytechniqueMontréalQuébecH3T 1J4Canada
| |
Collapse
|
2
|
Malode SJ, Pandiaraj S, Alodhayb A, Shetti NP. Carbon Nanomaterials for Biomedical Applications: Progress and Outlook. ACS APPLIED BIO MATERIALS 2024; 7:752-777. [PMID: 38271214 DOI: 10.1021/acsabm.3c00983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Recent developments in nanoscale materials have found extensive use in various fields, especially in the biomedical industry. Several substantial obstacles must be overcome, particularly those related to nanostructured materials in biomedicine, before they can be used in therapeutic applications. Significant concerns in biomedicine include biological processes, adaptability, toxic effects, and nano-biointerfacial properties. Biomedical researchers have difficulty choosing suitable materials for drug carriers, cancer treatment, and antiviral uses. Carbon nanomaterials are among the various nanoparticle forms that are continually receiving interest for biomedical applications. They are suitable materials owing to their distinctive physical and chemical properties, such as electrical, high-temperature, mechanical, and optical diversification. An individualized, controlled, dependable, low-carcinogenic, target-specific drug delivery system can diagnose and treat infections in biomedical applications. The variety of carbon materials at the nanoscale is remarkable. Allotropes and other forms of the same element, carbon, are represented in nanoscale dimensions. These show promise for a wide range of applications. Carbon nanostructured materials with exceptional mechanical, electrical, and thermal properties include graphene and carbon nanotubes. They can potentially revolutionize industries, including electronics, energy, and medicine. Ongoing investigation and expansion efforts continue to unlock possibilities for these materials, making them a key player in shaping the future of advanced technology. Carbon nanostructured materials explore the potential positive effects of reducing the greenhouse effect. The current state of nanostructured materials in the biomedical sector is covered in this review, along with their synthesis techniques and potential uses.
Collapse
Affiliation(s)
- Shweta J Malode
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Vidyanagar, Hubballi 580031, Karnataka, India
| | - Saravanan Pandiaraj
- Department of Self-Development Skills, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah Alodhayb
- Department of Physics and Astronomy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nagaraj P Shetti
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Vidyanagar, Hubballi 580031, Karnataka, India
- University Center for Research & Development (UCRD), Chandigarh University, Gharuan, Mohali 140413, Panjab, India
| |
Collapse
|
3
|
Bagheri B, Surwase SS, Lee SS, Park H, Faraji Rad Z, Trevaskis NL, Kim YC. Carbon-based nanostructures for cancer therapy and drug delivery applications. J Mater Chem B 2022; 10:9944-9967. [PMID: 36415922 DOI: 10.1039/d2tb01741e] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Synthesis, design, characterization, and application of carbon-based nanostructures (CBNSs) as drug carriers have attracted a great deal of interest over the past half of the century because of their promising chemical, thermal, physical, optical, mechanical, and electrical properties and their structural diversity. CBNSs are well-known in drug delivery applications due to their unique features such as easy cellular uptake, high drug loading ability, and thermal ablation. CBNSs, including carbon nanotubes, fullerenes, nanodiamond, graphene, and carbon quantum dots have been quite broadly examined for drug delivery systems. This review not only summarizes the most recent studies on developing carbon-based nanostructures for drug delivery (e.g. delivery carrier, cancer therapy and bioimaging), but also tries to deal with the challenges and opportunities resulting from the expansion in use of these materials in the realm of drug delivery. This class of nanomaterials requires advanced techniques for synthesis and surface modifications, yet a lot of critical questions such as their toxicity, biodistribution, pharmacokinetics, and fate of CBNSs in biological systems must be answered.
Collapse
Affiliation(s)
- Babak Bagheri
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea. .,School of Engineering, University of Southern Queensland, Springfield Central, QLD, 4300, Australia
| | - Sachin S Surwase
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Su Sam Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Heewon Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Zahra Faraji Rad
- School of Engineering, University of Southern Queensland, Springfield Central, QLD, 4300, Australia
| | - Natalie L Trevaskis
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, VIC, 3052, Australia
| | - Yeu-Chun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| |
Collapse
|
4
|
Ramalingam P, Prabakaran DS, Sivalingam K, Nallal VUM, Razia M, Patel M, Kanekar T, Krishnamoorthy D. Recent Advances in Nanomaterials-Based Drug Delivery System for Cancer Treatment. NANOTECHNOLOGY IN THE LIFE SCIENCES 2022:83-116. [DOI: 10.1007/978-3-030-80371-1_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
5
|
Bagheri AR, Aramesh N, Bilal M, Xiao J, Kim HW, Yan B. Carbon nanomaterials as emerging nanotherapeutic platforms to tackle the rising tide of cancer - A review. Bioorg Med Chem 2021; 51:116493. [PMID: 34781082 DOI: 10.1016/j.bmc.2021.116493] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 10/30/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022]
Abstract
Cancer has become one of the main reasons for human death in recent years. Around 18 million new cancer cases and approximately 9.6 million deaths from cancer reported in 2018, and the annual number of cancer cases will have increased to 22 million in the next two decades. These alarming facts have rekindled researchers' attention to develop and apply different approaches for cancer therapy. Unfortunately, most of the applied methods for cancer therapy not only have adverse side effects like toxicity and damage of healthy cells but also have a short lifetime. To this end, introducing innovative and effective methods for cancer therapy is vital and necessary. Among different potential materials, carbon nanomaterials can cope with the rising threats of cancer. Due to unique physicochemical properties of different carbon nanomaterials including carbon, fullerene, carbon dots, graphite, single-walled carbon nanotube and multi-walled carbon nanotubes, they exhibit possibilities to address the drawbacks for cancer therapy. Carbon nanomaterials are prodigious materials due to their ability in drug delivery or remedial of small molecules. Functionalization of carbon nanomaterials can improve the cancer therapy process and decrement the side effects. These exceptional traits make carbon nanomaterials as versatile and prevalent materials for application in cancer therapy. This article spotlights the recent findings in cancer therapy using carbon nanomaterials (2015-till now). Different types of carbon nanomaterials and their utilization in cancer therapy were highlighted. The plausible mechanisms for the action of carbon nanomaterials in cancer therapy were elucidated and the advantages and disadvantages of each material were also illustrated. Finally, the current problems and future challenges for cancer therapy based on carbon nanomaterials were discussed.
Collapse
Affiliation(s)
| | - Nahal Aramesh
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran.
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Jiafu Xiao
- Hunan Province Key Laboratory for Antibody-based Drug and Intelligent Delivery System, Hunan University of Medicine, Huaihua 418000, PR China
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Kore; Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan 31116, Republic of Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan 31116, Republic of Korea; Cell & Matter Institute, Dankook University, Cheonan 31116, South Korea
| | - Bing Yan
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China; Institute of Environmental Research at Greater Bay Area, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
6
|
Kaur L, Sohal HS, Kaur M, Malhi DS, Garg S. A Mini-Review on Nano Technology in the Tumour Targeting Strategies: Drug Delivery to Cancer Cells. Anticancer Agents Med Chem 2021; 20:2012-2024. [PMID: 32753024 DOI: 10.2174/1871520620666200804103714] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/20/2020] [Accepted: 07/16/2020] [Indexed: 01/17/2023]
Abstract
BACKGROUND Recently, the application of cancer nanotechnology-based drug delivery to cancer cells has arisen as an important method to resolve multiple molecular, biophysical, and biochemical obstacles, which the body is preparing to resist against the productive implementation of chemotherapeutic medications. Drug delivery technologies focused on nanoparticles, which have resolved some of the drawbacks of conventional chemotherapy as, decreased drug viscosity, chemo-resistance, precise malignity, limited medicative measures with low oral bioactivity. Due to their adjustable size and surface properties, the half-life period of a drug can be increased in the bloodstream. OBJECTIVE The aim of the current study is to collect and document the data available on the drug delivery system for anticancer drugs. The present study includes some of the drug carriers like liposomes, carbon dots, micelles, carbon nanotubes, magnetic nanoparticles, etc. Methods: To write this review, an exhaustive literature survey was carried out using relevant work published in various SCI, Scopus, and non-SCI indexed journals. The different search engines used to download the research/ review papers are Google search, PubMed, Science Direct, Google Scholar, Scientific Information Database and Research Gate, etc. Results: Nanotechnology offers better pharmacokinetics, reduces the systematic toxicities related to the chemotherapies and a better route of drug administration. In the analysis, we critically highlight recent studies on carcinoma-fighting nanotechnology. CONCLUSION In the present study, different kinds of nano-based drug delivery systems have been discussed along with their characteristic features, the encapsulation of anticancer agents into different types of nanometresized vehicles and their general mechanism.
Collapse
Affiliation(s)
- Loveleen Kaur
- Medicinal and Natural Product Laboratory, Department of Chemistry, Chandigarh University, Gharuan-140413, Mohali, Punjab, India
| | - Harvinder S Sohal
- Medicinal and Natural Product Laboratory, Department of Chemistry, Chandigarh University, Gharuan-140413, Mohali, Punjab, India
| | - Manvinder Kaur
- Medicinal and Natural Product Laboratory, Department of Chemistry, Chandigarh University, Gharuan-140413, Mohali, Punjab, India
| | - Dharambeer S Malhi
- Medicinal and Natural Product Laboratory, Department of Chemistry, Chandigarh University, Gharuan-140413, Mohali, Punjab, India
| | - Sonali Garg
- Medicinal and Natural Product Laboratory, Department of Chemistry, Chandigarh University, Gharuan-140413, Mohali, Punjab, India
| |
Collapse
|
7
|
Chegeni M, Mehri M, Dehdashtian S, Hosseini M. Preparation and Characterization of Perlite/Starch/SWCNT‐Glucose Bionanocomposite for Pathogen Detection**. ChemistrySelect 2021. [DOI: 10.1002/slct.202004625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mahdieh Chegeni
- Department of Chemistry Faculty of Basic Science Ayatollah Boroujerdi University Boroujerd Iran
| | - Mozhgan Mehri
- Department of Chemistry Faculty of Basic Science Ayatollah Boroujerdi University Boroujerd Iran
| | - Sara Dehdashtian
- Department of Mechanical Engineering Shohadaye Hoveizeh University of Technology Susangerd Iran
| | - Mehdi Hosseini
- Department of Chemistry Faculty of Basic Science Ayatollah Boroujerdi University Boroujerd Iran
| |
Collapse
|
8
|
Synthesis and evaluation of nonionic surfactants based on dimethylaminoethylamine: Electrochemical investigation and theoretical modeling as inhibitors during electropolishing in-ortho-phosphoric acid. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115421] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
9
|
Riley PR, Narayan RJ. Recent advances in carbon nanomaterials for biomedical applications: A review. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021; 17:100262. [PMID: 33786405 PMCID: PMC7993985 DOI: 10.1016/j.cobme.2021.100262] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/31/2020] [Accepted: 01/04/2021] [Indexed: 12/20/2022]
Abstract
With the emergence of new pathogens like coronavirus disease 2019 and the prevalence of cancer as one of the leading causes of mortality globally, the effort to develop appropriate materials to address these challenges is a critical research area. Researchers around the world are investigating new types of materials and biological systems to fight against various diseases that affect humans and animals. Carbon nanostructures with their properties of straightforward functionalization, capability for drug loading, biocompatibility, and antiviral properties have become a major focus of biomedical researchers. However, reducing toxicity, enhancing biocompatibility, improving dispersibility, and enhancing water solubility have been challenging for carbon-based biomedical systems. The goal of this article is to provide a review on the latest progress involving the use of carbon nanostructures, namely fullerenes, graphene, and carbon nanotubes, for drug delivery, cancer therapy, and antiviral applications.
Collapse
Affiliation(s)
- Parand R Riley
- Department of Materials Science and Engineering, Centennial Campus, North Carolina State University, Raleigh, NC, 27695-7907, USA
| | - Roger J Narayan
- Joint Department of Biomedical Engineering, Centennial Campus, North Carolina State University, Raleigh, NC, 27695-7115, USA
| |
Collapse
|
10
|
Jampilek J, Kralova K. Advances in Drug Delivery Nanosystems Using Graphene-Based Materials and Carbon Nanotubes. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1059. [PMID: 33668271 PMCID: PMC7956197 DOI: 10.3390/ma14051059] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 02/07/2023]
Abstract
Carbon is one of the most abundant elements on Earth. In addition to the well-known crystallographic modifications such as graphite and diamond, other allotropic carbon modifications such as graphene-based nanomaterials and carbon nanotubes have recently come to the fore. These carbon nanomaterials can be designed to help deliver or target drugs more efficiently and to innovate therapeutic approaches, especially for cancer treatment, but also for the development of new diagnostic agents for malignancies and are expected to help combine molecular imaging for diagnosis with therapies. This paper summarizes the latest designed drug delivery nanosystems based on graphene, graphene quantum dots, graphene oxide, reduced graphene oxide and carbon nanotubes, mainly for anticancer therapy.
Collapse
Affiliation(s)
- Josef Jampilek
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska Cesta 9, 845 10 Bratislava, Slovakia
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Katarina Kralova
- Institute of Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia;
| |
Collapse
|