1
|
Hallavant K, Mejres M, Schawe JEK, Esposito A, Saiter-Fourcin A. Influence of Chemical Composition and Structure on the Cooperative Fluctuation in Supercooled Glass-Forming Liquids. J Phys Chem Lett 2024; 15:4508-4514. [PMID: 38634820 DOI: 10.1021/acs.jpclett.4c00632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
The kinetics of the glass transition and the characteristic size of the fluctuating spatio-temporal domains in supercooled glass-forming liquids, i.e., the Cooperatively Rearranging Regions (CRR), were measured upon cooling over a broad range of cooling rates using Differential Scanning Calorimetry (DSC) and chip-based Fast Scanning Calorimetry (FSC). The investigations were conducted on a selection of fragile glass formers (fragility indices between 80 and 140), with a large variance in the atomic or molecular structure but comparable thermal glass transition temperatures Tg, with the aim of evaluating the influence of chemical composition and structure on the CRR size and the associated temperature fluctuation. The selected materials are two polymers (poly(vinyl acetate) (PVAc), poly(lactic acid) (PLA)) as well as the simplest chalcogenide glass-former (selenium). It turned out that the CRR size plotted against the reduced temperature T/Tg follows the same trend, irrespective of the considered glass-former.
Collapse
Affiliation(s)
- Kylian Hallavant
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Groupe de Physique des Matériaux UMR 6634, F-76000 Rouen, France
| | - Marouane Mejres
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Groupe de Physique des Matériaux UMR 6634, F-76000 Rouen, France
| | - Jürgen E K Schawe
- Mettler-Toledo GmbH, Analytical, 8606 Nänikon, Switzerland
- Laboratory of Metal Physics and Technology, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
| | - Antonella Esposito
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Groupe de Physique des Matériaux UMR 6634, F-76000 Rouen, France
| | - Allisson Saiter-Fourcin
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Groupe de Physique des Matériaux UMR 6634, F-76000 Rouen, France
| |
Collapse
|
2
|
Murariu M, Paint Y, Murariu O, Laoutid F, Dubois P. Tailoring and Long-Term Preservation of the Properties of PLA Composites with "Green" Plasticizers. Polymers (Basel) 2022; 14:4836. [PMID: 36432967 PMCID: PMC9696962 DOI: 10.3390/polym14224836] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/03/2022] [Accepted: 11/06/2022] [Indexed: 11/12/2022] Open
Abstract
Concerning new polylactide (PLA) applications, the study investigates the toughening of PLA-CaSO4 β-anhydrite II (AII) composites with bio-sourced tributyl citrate (TBC). The effects of 5-20 wt.% TBC were evaluated in terms of morphology, mechanical and thermal properties, focusing on the enhancement of PLA crystallization and modification of glass transition temperature (Tg). Due to the strong plasticizing effects of TBC (even at 10%), the plasticized composites are characterized by significant decrease of Tg and rigidity, increase of ductility and impact resistance. Correlated with the amounts of plasticizer, a dramatic drop in melt viscosity is also revealed. Therefore, for applications requiring increased viscosity and enhanced melt strength (extrusion, thermoforming), the reactive modification, with up to 1% epoxy functional styrene-acrylic oligomers, was explored to enhance their rheology. Moreover, larger quantities of products were obtained by reactive extrusion (REX) and characterized to evidence their lower stiffness, enhanced ductility, and toughness. In current prospects, selected samples were tested for the extrusion of tubes (straws) and films. The migration of plasticizer was not noted (at 10% TBC), whereas the mechanical and thermal characterizations of films after two years of aging evidenced a surprising preservation of properties.
Collapse
Affiliation(s)
- Marius Murariu
- Laboratory of Polymeric and Composite Materials, Materia Nova Materials R&D Center & UMons Innovation Center, 3 Avenue Copernic, 7000 Mons, Belgium
| | - Yoann Paint
- Laboratory of Polymeric and Composite Materials, Materia Nova Materials R&D Center & UMons Innovation Center, 3 Avenue Copernic, 7000 Mons, Belgium
| | - Oltea Murariu
- Laboratory of Polymeric and Composite Materials, Materia Nova Materials R&D Center & UMons Innovation Center, 3 Avenue Copernic, 7000 Mons, Belgium
| | - Fouad Laoutid
- Laboratory of Polymeric and Composite Materials, Materia Nova Materials R&D Center & UMons Innovation Center, 3 Avenue Copernic, 7000 Mons, Belgium
| | - Philippe Dubois
- Laboratory of Polymeric and Composite Materials, Materia Nova Materials R&D Center & UMons Innovation Center, 3 Avenue Copernic, 7000 Mons, Belgium
- Laboratory of Polymeric and Composite Materials, Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons (UMons), Place du Parc 20, 7000 Mons, Belgium
| |
Collapse
|
3
|
Araujo S, Sainlaud C, Delpouve N, Richaud E, Delbreilh L, Dargent E. Segmental Relaxation Dynamics in Amorphous Polylactide Exposed to UV Light. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Steven Araujo
- Normandie Univ, UNIROUEN Normandie, INSA Rouen, CNRS, Groupe de Physique des Matériaux Rouen 76000 France
| | - Chloé Sainlaud
- Normandie Univ, UNIROUEN Normandie, INSA Rouen, CNRS, Groupe de Physique des Matériaux Rouen 76000 France
| | - Nicolas Delpouve
- Normandie Univ, UNIROUEN Normandie, INSA Rouen, CNRS, Groupe de Physique des Matériaux Rouen 76000 France
| | - Emmanuel Richaud
- Laboratoire PIMM, Arts et Metiers Institute of Technology, CNRS, Cnam, HESAM Université, 151 boulevard de l'Hopital Paris 75013 France
| | - Laurent Delbreilh
- Normandie Univ, UNIROUEN Normandie, INSA Rouen, CNRS, Groupe de Physique des Matériaux Rouen 76000 France
| | - Eric Dargent
- Normandie Univ, UNIROUEN Normandie, INSA Rouen, CNRS, Groupe de Physique des Matériaux Rouen 76000 France
| |
Collapse
|
4
|
Time and frequency domain dielectric spectroscopy for in-situ and ex-situ determination of amorphous fractions of isothermally cold-crystallized Polylactic acid. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03148-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Promoting Interfacial Interactions with the Addition of Lignin in Poly(Lactic Acid) Hybrid Nanocomposites. Polymers (Basel) 2021; 13:polym13020272. [PMID: 33467623 PMCID: PMC7830551 DOI: 10.3390/polym13020272] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/08/2021] [Accepted: 01/10/2021] [Indexed: 01/06/2023] Open
Abstract
In this paper, the calorimetric response of the amorphous phase was examined in hybrid nanocomposites which were prepared thanks to a facile synthetic route, by adding reduced graphene oxide (rGO), Cloisite 30B (C30B), or multiwalled carbon nanotubes (MWCNT) to lignin-filled poly(lactic acid) (PLA). The dispersion of both lignin and nanofillers was successful, according to a field-emission scanning-electron microscopy (FESEM) analysis. Lignin alone essentially acted as a crystallization retardant for PLA, and the nanocomposites shared this feature, except when MWCNT was used as nanofiller. All systems exhibiting a curtailed crystallization also showed better thermal stability than neat PLA, as assessed from thermogravimetric measurements. As a consequence of favorable interactions between the PLA matrix, lignin, and the nanofillers, homogeneous dispersion or exfoliation was assumed in amorphous samples from the increase of the cooperative rearranging region (CRR) size, being even more remarkable when increasing the lignin content. The amorphous nanocomposites showed a signature of successful filler inclusion, since no rigid amorphous fraction (RAF) was reported at the filler/matrix interface. Finally, the nanocomposites were crystallized up to their maximum extent from the glassy state in nonisothermal conditions. Despite similar degrees of crystallinity and RAF, significant variations in the CRR size were observed among samples, revealing different levels of mobility constraining in the amorphous phase, probably linked to a filler-dimension dependence of space filling.
Collapse
|
6
|
Dynamic Mechanical Analysis Investigations of PLA-Based Renewable Materials: How Are They Useful? MATERIALS 2020; 13:ma13225302. [PMID: 33238537 PMCID: PMC7700632 DOI: 10.3390/ma13225302] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/04/2020] [Accepted: 11/12/2020] [Indexed: 02/04/2023]
Abstract
Interest in renewable polymers increased exponentially in the last decade and in this context poly(lactic acid) (PLA) became the leader mainly for practical reasons. Nevertheless, it is outstanding also from a scientific point of view, because its thermal and morphological properties are offering challenging new insights. With regard to dynamic mechanical analysis (DMA), PLA does not have the classical behavior of a thermoplastic polymer. Often, overlapping events (enthalpic relaxation, glass transition and crystallization) that occur as the temperature increases make the DMA result of a PLA look inexplicable even for polymer scientists. This review offers a perspective of the main phenomena that can be revealed in a DMA experiment and systematizes the information that can be obtained for every region (glassy, glass transition, rubbery, cold-crystallization and melting). Also, some unusual patterns registered in some cases will be commented upon. The review intends to offer indices that one should pay attention to in the interpretation of a DMA experiment, even if the investigator has only basic skills with DMA investigations.
Collapse
|
7
|
Delpouve N, Saiter-Fourcin A, Coiai S, Cicogna F, Spiniello R, Oberhauser W, Legnaioli S, Ishak R, Passaglia E. Effects of organo-LDH dispersion on thermal stability, crystallinity and mechanical features of PLA. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122952] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Aliotta L, Gazzano M, Lazzeri A, Righetti MC. Constrained Amorphous Interphase in Poly(l-lactic acid): Estimation of the Tensile Elastic Modulus. ACS OMEGA 2020; 5:20890-20902. [PMID: 32875224 PMCID: PMC7450648 DOI: 10.1021/acsomega.0c02330] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 06/23/2020] [Indexed: 06/11/2023]
Abstract
The mechanical properties of semicrystalline PLLA containing exclusively α'- or α-crystals have been investigated. The connection between experimental elastic moduli and phase composition has been analyzed as a function of the polymorphic crystalline form. For a complete interpretation of the mechanical properties, the contribution of the crystalline regions and the constrained amorphous interphase or rigid amorphous fraction (RAF) has been quantified by a three-phase mechanical model. The mathematical approach allowed the simultaneous quantification of the elastic moduli of (i) the α'- and α-phases (11.2 and 14.8 GPa, respectively, in excellent agreement with experimental and theoretical data reported in the literature) and (ii) the rigid amorphous fractions linked to the α'- and α-forms (5.4 and 6.1 GPa, respectively). In parallel, the densities of the RAF connected with α'- and α-crystals have been measured (1.17 and 1.11 g/cm3, respectively). The slightly higher value of the elastic modulus of the RAF connected to the α-crystals and its lower density have been associated to a stronger chain coupling at the amorphous/crystal interface. Thus, the elastic moduli at T room of the crystalline (E C), mobile amorphous (E MAF), and rigid amorphous (E RAF) fractions of PLLA turned out to be quantitatively in the order of E MAF < E RAF < E C, with the experimental E MAF value equal to 3.6 GPa. These findings can allow a better tailoring of the properties of PLLA materials in relation to specific applications.
Collapse
Affiliation(s)
- Laura Aliotta
- Department
of Civil and Industrial Engineering, University
of Pisa, Largo L. Lazzarino 1, Pisa 56122, Italy
| | - Massimo Gazzano
- CNR-ISOF,
National Research Council−Institute of Organic Synthesis and
Photoreactivity, Via P. Gobetti 101, Bologna 40129, Italy
| | - Andrea Lazzeri
- Department
of Civil and Industrial Engineering, University
of Pisa, Largo L. Lazzarino 1, Pisa 56122, Italy
- CNR-IPCF,
National Research Council−Institute for Chemical and Physical
Processes, Via G. Moruzzi
1, Pisa 56124, Italy
| | - Maria Cristina Righetti
- CNR-IPCF,
National Research Council−Institute for Chemical and Physical
Processes, Via G. Moruzzi
1, Pisa 56124, Italy
| |
Collapse
|