1
|
Sajjadi SM, Ahmadi S, Behniafar H, Zare EN. Selective Recovery of Gold from Aqueous Media Using Magnetic PEG-Crosslinked Polystyrene. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:10000-10010. [PMID: 40197055 DOI: 10.1021/acs.langmuir.5c00700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
PEG-cross-linked and triethylenetetramine (TETA)-terminated polystyrene chains were formed on the surface of magnetic nanoparticles through atom transfer radical polymerization (ATRP). The prepared organic-inorganic hybrid material (denoted as MNP-PEGPS-L) was used to adsorb Au(III) ions from aqueous solutions. The MNP-PEGPS-L adsorbent was characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), X-ray diffraction (XRD), and vibrating-sample magnetometry (VSM). BET measurements showed that the particles have a porous structure, and their specific surface area was found to be 29.13 m2·g-1. Dynamic light scattering (DLS) analysis revealed that the hydrodynamic diameter distribution of the adsorbent particles follows a bimodal pattern, with two peaks appearing at 705 nm and 4087 nm. The particles in an aqueous solution with pH = 3 exhibited the highest zeta potential value (+22 mV) and, therefore, showed greater resistance to agglomeration. In adsorption studies, the equilibrium concentrations of ions (Ce values) were measured using inductively coupled plasma optical emission spectrometry (ICP-OES). The equilibrium adsorption capacity (Qe) was optimized in Au(III)-containing solutions at a pH of 3, an adsorbent dose of 0.2 mg·mL-1, a contact time of 60 min, and a temperature of 25 °C. Examination of the adsorption kinetics indicated that the adsorption of Au(III) ions occurs via chemisorption. The maximum adsorption capacity (Qmax) obtained from the Langmuir isotherm model (monolayer adsorption), was measured to be approximately 280 mg·g-1. Additionally, the study of the thermodynamics of adsorption demonstrated that the adsorption phenomenon is endothermic and occurs spontaneously. Overall, the prepared magnetic polymer adsorbent showed promising results in the recovery of gold ions from aqueous solutions due to its high hydrophilicity, high porosity, and excellent recyclability.
Collapse
Affiliation(s)
| | - Sajad Ahmadi
- School of Chemistry, Damghan University, Damghan 36716-41167, Iran
| | | | | |
Collapse
|
2
|
Chang CW, Lemich SB, Schütz P, Weerathaworn S, Weißpflog M, Wu CT, Tseng YH, Chang CT, Hankiewicz B, Abetz V, Chen JT. Dual-Responsive PIL Films with Gold Nanoparticles: Tailoring Electrical Responses to pH and Thermal Stimuli. ACS APPLIED MATERIALS & INTERFACES 2024; 16:61096-61104. [PMID: 39441949 PMCID: PMC11551959 DOI: 10.1021/acsami.4c14733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
In recent years, stimuli-responsive poly(ionic liquids) (PILs) have attracted great attention. The stimuli-dependent properties, particularly the electrical properties, of multiresponsive PILs incorporating functionalized nanoparticles, however, have been less investigated. In this work, we present the synthesis, characterization, and application of PIL films incorporating pH- and thermoresponsive hybrid materials composed of gold nanoparticles functionalized with poly(2-(dimethylamino)ethyl methacrylate) (Au@PDMAEMA). The Au@PDMAEMA nanoparticles exhibit distinct responsiveness to changes in environmental pH and temperature, thereby altering the electrical properties of the PIL films blended with responsive gold nanoparticles (PIL w/Au). This research not only fills a gap in the study of electrical properties of multiresponsive nanoparticle-incorporated PILs but also extends the potential applications of PILs in various fields, including smart sensors and electronic devices.
Collapse
Affiliation(s)
- Chia-Wei Chang
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, 300093 Hsinchu, Taiwan
| | | | - Patrick Schütz
- Institute
of Physical Chemistry, University of Hamburg, 20146 Hamburg, Germany
| | | | - Maria Weißpflog
- Institute
of Physical Chemistry, University of Hamburg, 20146 Hamburg, Germany
| | - Chia-Ti Wu
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, 300093 Hsinchu, Taiwan
| | - Yu-Hsuan Tseng
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, 300093 Hsinchu, Taiwan
| | - Chun-Ting Chang
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, 300093 Hsinchu, Taiwan
| | - Birgit Hankiewicz
- Institute
of Physical Chemistry, University of Hamburg, 20146 Hamburg, Germany
| | - Volker Abetz
- Institute
of Physical Chemistry, University of Hamburg, 20146 Hamburg, Germany
- Institute
of Membrane Research, Helmholtz-Zentrum Hereon, 21502 Geesthacht, Germany
| | - Jiun-Tai Chen
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, 300093 Hsinchu, Taiwan
- Center
for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 300093 Hsinchu, Taiwan
| |
Collapse
|
3
|
Rudra S, Mondal S, Chakraborty M, Swamy MJ, Jana T. Galactose Glycopolymer- Grafted Silica Nanoparticles: Synthesis and Binding Studies with Lectin. ACS APPLIED BIO MATERIALS 2024; 7:5689-5701. [PMID: 39116418 DOI: 10.1021/acsabm.4c00759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Weak binding of carbohydrates with protein receptors possesses serious drawbacks in the advancement of therapeutics; however, the development of strategies for multipoint interactions between carbohydrates and protein can overcome these challenges. One such method is developed in this work where glycopolymer-grafted silica nanoparticles with a large number of carbohydrate units are prepared for the interactions with multiple binding sites of the protein. First, a glycomonomer, β-d-galactose-hydroxyethyl methacrylate (β-GEMA), was synthesized in a two-step process by coupling β-d-galactose pentaacetate and hydroxyethyl methacrylate (HEMA), followed by deacetylation for the preparation of poly(β-GEMA) glycopolymers (GPs). Further, the poly(β-GEMA) chains were grafted onto the silica nanoparticle (SiNP) surface by utilizing the "grafting-from" strategy of surface-initiated reversible addition-fragmentation chain transfer (RAFT) polymerization to prepare p(β-GEMA)-grafted SiNPs (GNPs). Five different chain lengths ranging from 10 to 40 kDa of the GPs and the GNPs were prepared, and various characterization techniques confirmed the formation of GPs and grafting of the GPs on the SiNP surface. The particle size of GNPs and the number of GPs grafted on the SiNP surface showed a strong dependence on the chain length of the GPs. Further, the GNPs were subjected to a binding study with β-galactose-specific protein peanut agglutinin (PNA). A much stronger binding in the case of GNPs was observed with an association constant ∼320 times and ∼53 times than that of the monomeric methyl-β-d-galactopyranoside and the GPs, respectively. Additionally, the binding of the PNA with GNPs and GPs was also studied with varying chain lengths to understand the effects of the chain length on the binding affinity. A clear increase in binding constants was observed in the case of GNPs with increasing chain length of grafted GPs, attributed to the enhanced enthalpic and entropic contributions. This work holds its uniqueness in these improved interactions between carbohydrates and proteins, which can be used for carbohydrate-based targeted therapeutics.
Collapse
Affiliation(s)
- Somdatta Rudra
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| | - Saradamoni Mondal
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| | | | - Musti J Swamy
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| | - Tushar Jana
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| |
Collapse
|
4
|
Li Q, Yan F, Texter J. Polymerized and Colloidal Ionic Liquids─Syntheses and Applications. Chem Rev 2024; 124:3813-3931. [PMID: 38512224 DOI: 10.1021/acs.chemrev.3c00429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The breadth and importance of polymerized ionic liquids (PILs) are steadily expanding, and this review updates advances and trends in syntheses, properties, and applications over the past five to six years. We begin with an historical overview of the genesis and growth of the PIL field as a subset of materials science. The genesis of ionic liquids (ILs) over nano to meso length-scales exhibiting 0D, 1D, 2D, and 3D topologies defines colloidal ionic liquids, CILs, which compose a subclass of PILs and provide a synthetic bridge between IL monomers (ILMs) and micro to macro-scale PIL materials. The second focus of this review addresses design and syntheses of ILMs and their polymerization reactions to yield PILs and PIL-based materials. A burgeoning diversity of ILMs reflects increasing use of nonimidazolium nuclei and an expanding use of step-growth chemistries in synthesizing PIL materials. Radical chain polymerization remains a primary method of making PILs and reflects an increasing use of controlled polymerization methods. Step-growth chemistries used in creating some CILs utilize extensive cross-linking. This cross-linking is enabled by incorporating reactive functionalities in CILs and PILs, and some of these CILs and PILs may be viewed as exotic cross-linking agents. The third part of this update focuses upon some advances in key properties, including molecular weight, thermal properties, rheology, ion transport, self-healing, and stimuli-responsiveness. Glass transitions, critical solution temperatures, and liquidity are key thermal properties that tie to PIL rheology and viscoelasticity. These properties in turn modulate mechanical properties and ion transport, which are foundational in increasing applications of PILs. Cross-linking in gelation and ionogels and reversible step-growth chemistries are essential for self-healing PILs. Stimuli-responsiveness distinguishes PILs from many other classes of polymers, and it emphasizes the importance of segmentally controlling and tuning solvation in CILs and PILs. The fourth part of this review addresses development of applications, and the diverse scope of such applications supports the increasing importance of PILs in materials science. Adhesion applications are supported by ionogel properties, especially cross-linking and solvation tunable interactions with adjacent phases. Antimicrobial and antifouling applications are consequences of the cationic nature of PILs. Similarly, emulsion and dispersion applications rely on tunable solvation of functional groups and on how such groups interact with continuous phases and substrates. Catalysis is another significant application, and this is an historical tie between ILs and PILs. This component also provides a connection to diverse and porous carbon phases templated by PILs that are catalysts or serve as supports for catalysts. Devices, including sensors and actuators, also rely on solvation tuning and stimuli-responsiveness that include photo and electrochemical stimuli. We conclude our view of applications with 3D printing. The largest components of these applications are energy related and include developments for supercapacitors, batteries, fuel cells, and solar cells. We conclude with our vision of how PIL development will evolve over the next decade.
Collapse
Affiliation(s)
- Qi Li
- Department of Materials Science, School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, Jiangsu, PR China
| | - Feng Yan
- Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, PR China
| | - John Texter
- Strider Research Corporation, Rochester, New York 14610-2246, United States
- School of Engineering, Eastern Michigan University, Ypsilanti, Michigan 48197, United States
| |
Collapse
|
5
|
Javed A, Palafox Gonzalez P, Thangadurai V. A Critical Review of Electrolytes for Advanced Low- and High-Temperature Polymer Electrolyte Membrane Fuel Cells. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37326582 DOI: 10.1021/acsami.3c02635] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In the 21st century, proton exchange membrane fuel cells (PEMFCs) represent a promising source of power generation due to their high efficiency compared with coal combustion engines and eco-friendly design. Proton exchange membranes (PEMs), being the critical component of PEMFCs, determine their overall performance. Perfluorosulfonic acid (PFSA) based Nafion and nonfluorinated-based polybenzimidazole (PBI) membranes are commonly used for low- and high-temperature PEMFCs, respectively. However, these membranes have some drawbacks such as high cost, fuel crossover, and reduction in proton conductivity at high temperatures for commercialization. Here, we report the requirements of functional properties of PEMs for PEMFCs, the proton conduction mechanism, and the challenges which hinder their commercial adaptation. Recent research efforts have been focused on the modifications of PEMs by composite materials to overcome their drawbacks such as stability and proton conductivity. We discuss some current developments in membranes for PEMFCs with special emphasis on hybrid membranes based on Nafion, PBI, and other nonfluorinated proton conducting membranes prepared through the incorporation of different inorganic, organic, and hybrid fillers.
Collapse
Affiliation(s)
- Aroosa Javed
- Department of Chemistry, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | | | | |
Collapse
|
6
|
Mutlutürk E, Tamer U, Caykara T. Photo‐ and pH‐Responsive Hybrid Colloidal Particles. ChemistrySelect 2023. [DOI: 10.1002/slct.202204497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Esma Mutlutürk
- Department of Chemistry Polatlı Faculty of Art and Science Ankara Hacı Bayram Veli University 06900 Polatlı Ankara Turkey
| | - Uğur Tamer
- Department of Analytical Chemistry Faculty of Pharmacy Gazi University 06330 Ankara Turkey
| | - Tuncer Caykara
- Department of Chemistry Faculty of Science Gazi University,Ankara 06500 Besevler, Ankara/ Turkey
| |
Collapse
|
7
|
Gorre A, Das A, Jana T. Mixed matrix composite PEM with super proton conductivity developed from ionic liquid modified silica nanoparticle and polybenzimidazole. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2022. [DOI: 10.1080/10601325.2022.2154677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Akhil Gorre
- School of Chemistry, University of Hyderabad, Hyderabad, India
| | - Anupam Das
- School of Chemistry, University of Hyderabad, Hyderabad, India
| | - Tushar Jana
- School of Chemistry, University of Hyderabad, Hyderabad, India
| |
Collapse
|
8
|
Recent advances in Poly(ionic liquids) membranes for CO2 separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Zhang S, Ma X, Zhu Y, Guo R. Dispersion polymerization of styrene/acrylonitrile in polyether stabilized by macro-RAFT agents. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Li R, Han Y, Akcora P. Ion channels in sulfonated copolymer-grafted nanoparticles in ionic liquids. SOFT MATTER 2022; 18:5402-5409. [PMID: 35815406 DOI: 10.1039/d2sm00725h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The use of ionic liquids as solvents for polymers or polymer-grafted nanoparticles provides an exciting feature to explore electrolyte-polymer interactions. 1-Hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (HMIm-TFSI) can have specific interactions with the polymer through ion-dipole forces or hydrogen bonding. In this work, poly(methyl methacrylate)-b-poly(styrene sulfonate) (PMMA-b-PSS) copolymer-grafted Fe3O4 nanoparticles with different sulfonation levels (∼4.9 to 10.9 mol% SS) were synthesized, and their concentration dependent ionic conductivities were reported in acetonitrile and HMIm-TFSI/acetonitrile mixtures. We found that conductivity enhancement with the particle concentration in acetonitrile was due to the aggregation of grafted particles, resulting in sulfonic domain connectivity. The ionic conductivity was found to be related to the effective hopping transfer within ionic channels. On the contrary, the conductivity decreased or remained constant with increasing particle concentration in HMIm-TFSI/acetonitrile. This result was attributed to the ion coupling between ionic liquids and copolymer domains.
Collapse
Affiliation(s)
- Ruhao Li
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, NJ 07030, USA.
| | - Yuke Han
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, NJ 07030, USA.
| | - Pinar Akcora
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, NJ 07030, USA.
| |
Collapse
|
11
|
Construction of highly conductive PBI-based alloy membranes by incorporating PIMs with optimized molecular weights for high-temperature proton exchange membrane fuel cells. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Mohamed AH, Noorhisham NA, Bakar K, Yahaya N, Mohamad S, Kamaruzaman S, Osman H. Synthesis of imidazolium-based poly(ionic liquids) with diverse substituents and their applications in dispersive solid-phase extraction. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
13
|
Wang F, Li J, Lu L, Yan X, Xie Z, Qi D. Novel Strategy for the Synthesis of Polymer/Pigment Hybrid Latex via Sulfur-Free RAFT-Mediated Emulsion Polymerization. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Fenping Wang
- Zhejiang Provincial Engineering Research Center for Green and Low-carbon Dyeing & Finishing, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education of the People’s Republic of China, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jiawei Li
- Zhejiang Provincial Engineering Research Center for Green and Low-carbon Dyeing & Finishing, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education of the People’s Republic of China, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Lin Lu
- Zhejiang Provincial Engineering Research Center for Green and Low-carbon Dyeing & Finishing, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education of the People’s Republic of China, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xiaofei Yan
- Zhejiang Provincial Engineering Research Center for Green and Low-carbon Dyeing & Finishing, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education of the People’s Republic of China, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Ziwen Xie
- Zhejiang Provincial Engineering Research Center for Green and Low-carbon Dyeing & Finishing, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education of the People’s Republic of China, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Dongming Qi
- Zhejiang Provincial Engineering Research Center for Green and Low-carbon Dyeing & Finishing, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education of the People’s Republic of China, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
14
|
Yang H, Cai S, Jiang Y, Cao Z, Ma W, Gong F, Tao G, Liu C. High‐efficient surface tailoring via reverse atom transfer radical polymerization and reversible addition‐fragmentation chain‐transfer polymerization in an aqueous system initiated by a monocenter redox pair. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20210827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Haicun Yang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering Changzhou University Changzhou Jiangsu China
- National Experimental Demonstration Center for Materials Science and Engineering (Changzhou University) Changzhou Jiangsu China
| | - Shuipi Cai
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering Changzhou University Changzhou Jiangsu China
| | - Yu Jiang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering Changzhou University Changzhou Jiangsu China
| | - Zheng Cao
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering Changzhou University Changzhou Jiangsu China
- National Experimental Demonstration Center for Materials Science and Engineering (Changzhou University) Changzhou Jiangsu China
| | - Wenzhong Ma
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering Changzhou University Changzhou Jiangsu China
- National Experimental Demonstration Center for Materials Science and Engineering (Changzhou University) Changzhou Jiangsu China
| | - Fanghong Gong
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering Changzhou University Changzhou Jiangsu China
- School of Mechanical Technology Wuxi Institute of Technology Wuxi Jiangsu China
| | - Guoliang Tao
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering Changzhou University Changzhou Jiangsu China
| | - Chunlin Liu
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering Changzhou University Changzhou Jiangsu China
- Changzhou University Huaide College Changzhou Jiangsu China
| |
Collapse
|
15
|
Application of Imidazolium-based polyionic liquids to separate the 1,3,5-Trioxane-Water/Ethanol-Water system based on experimental verification and molecular mechanism analysis. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
16
|
Mukherjee N, Das A, Dhara M, Jana T. Surface initiated RAFT polymerization to synthesize N-heterocyclic block copolymer grafted silica nanofillers for improving PEM properties. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
17
|
Cui Y, Wang S, Wang D, Liu G, Liu F, Liang D, Wang X, Yong Z, Wang Z. HT-PEMs based on carbazole grafted polybenzimidazole with high proton conductivity and excellent tolerance of phosphoric acid. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119610] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
18
|
Ionic Liquid in Phosphoric Acid-Doped Polybenzimidazole (PA-PBI) as Electrolyte Membranes for PEM Fuel Cells: A Review. MEMBRANES 2021; 11:membranes11100728. [PMID: 34677494 PMCID: PMC8541579 DOI: 10.3390/membranes11100728] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 11/17/2022]
Abstract
Increasing world energy demand and the rapid depletion of fossil fuels has initiated explorations for sustainable and green energy sources. High-temperature polymer electrolyte membrane fuel cells (HT-PEMFCs) are viewed as promising materials in fuel cell technology due to several advantages, namely improved kinetic of both electrodes, higher tolerance for carbon monoxide (CO) and low crossover and wastage. Recent technology developments showed phosphoric acid-doped polybenzimidazole (PA-PBI) membranes most suitable for the production of polymer electrolyte membrane fuel cells (PEMFCs). However, drawbacks caused by leaching and condensation on the phosphate groups hindered the application of the PA-PBI membranes. By phosphate anion adsorption on Pt catalyst layers, a higher volume of liquid phosphoric acid on the electrolyte-electrode interface and within the electrodes inhibits or even stops gas movement and impedes electron reactions as the phosphoric acid level grows. Therefore, doping techniques have been extensively explored, and recently ionic liquids (ILs) were introduced as new doping materials to prepare the PA-PBI membranes. Hence, this paper provides a review on the use of ionic liquid material in PA-PBI membranes for HT-PEMFC applications. The effect of the ionic liquid preparation technique on PA-PBI membranes will be highlighted and discussed on the basis of its characterization and performance in HT-PEMFC applications.
Collapse
|
19
|
Fahmy A, Abou-Saied M, Helaly H, El-Dessoki F, Mohamed TA. Novel PVA/Methoxytrimethylsilane elastic composite membranes: preparation, characterization and DFT computation. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130173] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
20
|
CagriAta A, Yildiko Ü, Cakmak İ, Tanriverdi AA. Synthesis and characterization of polyvinyl alcohol-g-polystyrene copolymers via MADIX polymerization technique. IRANIAN POLYMER JOURNAL 2021. [DOI: 10.1007/s13726-021-00940-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
21
|
Ejeromedoghene O, Oderinde O, Adewuyi S. Advances in polymeric ionic liquids-based smart polymeric materials: emerging fabrication strategies. PHYSICAL SCIENCES REVIEWS 2021. [DOI: 10.1515/psr-2020-0081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract
Polymeric ionic liquids (PILs) are a class of materials characterized by fascinating physicochemical properties as well as tunable functionality that are quite interesting for the fabrication of materials. They have attracted tremendous attention because they are easy to prepare and can be manipulated into a polymeric matrix via covalent and noncovalent linkage/interactions to form new intelligent/smart polymeric materials with improved properties and multiple functionalities for application in many fields. These new materials are specially designed to change their performance properties when subjected to external environmental stimuli including pH, temperature, light, chemicals and electromagnetic fields. Therefore, this chapter presents the progress in the preparation of PILs via different polymerization reactions and highlights the emerging advances in the fabrication of PILs-based smart polymeric materials.
Collapse
Affiliation(s)
- Onome Ejeromedoghene
- School of Chemistry and Chemical Engineering, Southeast University , Jiangning District , Nanjing , Jiangsu Province , 211189 , P. R. China
- Department of Chemistry , College of Physical Sciences, Federal University of Agriculture , PMB 2240 , Abeokuta , Ogun State , Nigeria
| | - Olayinka Oderinde
- School of Chemistry and Chemical Engineering, Southeast University , Jiangning District , Nanjing , Jiangsu Province , 211189 , P. R. China
| | - Sheriff Adewuyi
- Department of Chemistry , College of Physical Sciences, Federal University of Agriculture , PMB 2240 , Abeokuta , Ogun State , Nigeria
| |
Collapse
|
22
|
Noorhisham NA, Amri D, Mohamed AH, Yahaya N, Ahmad NM, Mohamad S, Kamaruzaman S, Osman H. Characterisation techniques for analysis of imidazolium-based ionic liquids and application in polymer preparation: A review. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115340] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
Rubio Arias JJ, Bento SDS, Vieira Marques MDF, Gomes ADS. Fabrication of hybrid proton‐exchange membranes using a brandnew high temperature ionic liquid as charge transporting and clay modifier. J Appl Polym Sci 2021. [DOI: 10.1002/app.49871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jose Jonathan Rubio Arias
- Instituto de Macromoléculas Eloisa Mano, IMA‐UFRJ, Universidade Federal do Rio de Janeiro, Cidade Universitária Rio de Janeiro RJ Brazil
| | - Sabrina dos Santos Bento
- Instituto de Macromoléculas Eloisa Mano, IMA‐UFRJ, Universidade Federal do Rio de Janeiro, Cidade Universitária Rio de Janeiro RJ Brazil
| | - Maria de Fátima Vieira Marques
- Instituto de Macromoléculas Eloisa Mano, IMA‐UFRJ, Universidade Federal do Rio de Janeiro, Cidade Universitária Rio de Janeiro RJ Brazil
| | - Ailton de Souza Gomes
- Instituto de Macromoléculas Eloisa Mano, IMA‐UFRJ, Universidade Federal do Rio de Janeiro, Cidade Universitária Rio de Janeiro RJ Brazil
| |
Collapse
|
24
|
Hu L, Hao Q, Wang L, Cui Z, Fu P, Liu M, Qiao X, Pang X. The in situ “grafting from” approach for the synthesis of polymer brushes on upconversion nanoparticles via NIR-mediated RAFT polymerization. Polym Chem 2021. [DOI: 10.1039/d0py01550d] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Through NIR-mediated RAFT polymerization, surface growth of polymer brushes on UCNPs was realized based on an efficient in situ ligand exchange.
Collapse
Affiliation(s)
- Lingjuan Hu
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials
- Henan Key Laboratory of Advanced Nylon Materials and Application
- School of Materials Science and Engineering
- Zhengzhou University
- Zhengzhou 450001
| | - Qianqian Hao
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials
- Henan Key Laboratory of Advanced Nylon Materials and Application
- School of Materials Science and Engineering
- Zhengzhou University
- Zhengzhou 450001
| | - Linan Wang
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials
- Henan Key Laboratory of Advanced Nylon Materials and Application
- School of Materials Science and Engineering
- Zhengzhou University
- Zhengzhou 450001
| | - Zhe Cui
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials
- Henan Key Laboratory of Advanced Nylon Materials and Application
- School of Materials Science and Engineering
- Zhengzhou University
- Zhengzhou 450001
| | - Peng Fu
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials
- Henan Key Laboratory of Advanced Nylon Materials and Application
- School of Materials Science and Engineering
- Zhengzhou University
- Zhengzhou 450001
| | - Minying Liu
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials
- Henan Key Laboratory of Advanced Nylon Materials and Application
- School of Materials Science and Engineering
- Zhengzhou University
- Zhengzhou 450001
| | - Xiaoguang Qiao
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials
- Henan Key Laboratory of Advanced Nylon Materials and Application
- School of Materials Science and Engineering
- Zhengzhou University
- Zhengzhou 450001
| | - Xinchang Pang
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials
- Henan Key Laboratory of Advanced Nylon Materials and Application
- School of Materials Science and Engineering
- Zhengzhou University
- Zhengzhou 450001
| |
Collapse
|
25
|
Koyilapu R, Subhadarshini S, Singha S, Jana T. An in-situ RAFT polymerization technique for the preparation of poly(N-vinyl imidazole) modified Cloisite nanoclay to develop nanocomposite PEM. POLYMER 2021. [DOI: 10.1016/j.polymer.2020.123175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
26
|
Dhara M, Rudra S, Mukherjee N, Jana T. Hollow polymer nanocapsules with a ferrocenyl copolymer shell. Polym Chem 2021. [DOI: 10.1039/d1py00590a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Hollow polymer nanocapsules consisting of ferrocenyl shell have been developed by crosslinking the polymer chains grafted over silica nanoparticles synthesized via one pot surface-initiated RAFT polymerization.
Collapse
Affiliation(s)
- Moumita Dhara
- School of Chemistry
- University of Hyderabad
- Hyderabad 500046
- India
| | - Somdatta Rudra
- School of Chemistry
- University of Hyderabad
- Hyderabad 500046
- India
| | | | - Tushar Jana
- School of Chemistry
- University of Hyderabad
- Hyderabad 500046
- India
| |
Collapse
|
27
|
Liu Q, Jin F, Kang M, Song H, Chen J. Polymeric ionic liquid as novel catalyst for the Prins reaction. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.09.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|