1
|
Tian F, Huang H, Li Y, Zhai W. Fabrication of Soft Biodegradable Foam with Improved Shrinkage Resistance and Thermal Stability. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3712. [PMID: 39124376 PMCID: PMC11313563 DOI: 10.3390/ma17153712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024]
Abstract
The soft PBAT foam shows good flexibility, high elasticity, degradable nature, and it can be used as an environmental-friendly candidate for EVA and PU foams. Unfortunately, there are few reports on the application of PBAT as a soft foam. In this study, PBAT foam was fabricated by a pressure quenching method using CO2 as the blowing agent. A significant volume shrinkage of about 81% occurred, where the initial PBAT foam had an extremely high expansion ratio, of about 31 times. A 5-10 wt% PBS with high crystallinity was blended, and N2 with low gas solubility and diffusivity was mixed, with the aim of resisting foam shrinkage and preparing PBAT with a high final expansion ratio of 14.7 times. The possible mechanism behind this phenomenon was established, and the increased matrix modulus and decreased pressure difference within and outside the cell structure were the main reasons for the shrinkage resistance. The properties of PBAT and PBAT/PBS foams with a density of 0.1 g/cm3 were measured, based on the requirements for shoe applications. The 5-10 wt% PBS loading presented advantages in reducing thermal shrinkage at 75 °C/40 min, without compromising the hardness, elasticity, and the compression set, which ensures that PBAT/PBS foams have good prospects for use as soft foams.
Collapse
Affiliation(s)
| | | | | | - Wentao Zhai
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; (F.T.); (H.H.); (Y.L.)
| |
Collapse
|
2
|
Behera K, Tsai CH, Liao XB, Chiu FC. Fabrication and Characterization of PLA/PBAT Blends, Blend-Based Nanocomposites, and Their Supercritical Carbon Dioxide-Induced Foams. Polymers (Basel) 2024; 16:1971. [PMID: 39065288 PMCID: PMC11281301 DOI: 10.3390/polym16141971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/27/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
In this study, a twin-screw extruder was used to fabricate poly(lactic acid) (PLA)/poly(butylene adipate-co-terephthalate) (PBAT) blends and blend-based nanocomposites with carbon nanotube (CNT) or nanocarbon black (CB) as nanofillers. The fabricated samples were subsequently treated with supercritical carbon dioxide (scCO2) to fabricate the corresponding foams. Bi-phasic morphology and selective distribution of CNTs or CBs in the PBAT phase were observed in the blends/composites through scanning electron microscopy. After the scCO2 treatment, the selective foaming of the PBAT phase in the prepared blends/composites was confirmed. The cellular structure of PBAT phase in scCO2-treated blends is similar to the size/shape of PBAT domains in untreated blends or treated neat PBAT foam. The addition of CNTs or CBs in the blends led to a slight reduction in cell size of the foamed PBAT phase, demonstrating CNT/CB-induced cell nucleation. Differential scanning calorimetry (DSC) results showed that CNTs and CBs played as nucleating agents and increased the initial crystallization temperature up to 14 °C compared with neat PBAT for PBAT in different composites during cooling. The scCO2 treatment induced the bimodal stability of PBAT crystals in different samples, which melted mainly in two temperature regions in DSC studies. Thermogravimetric analyses revealed that compared with parent blends, the addition of CNTs or CBs increased the temperature at 80 wt.% loss (degradation of PBAT portion) up to 6 °C. The electrical resistivity decreased by more than six orders of magnitude for certain CNT- or CB-added composites compared with the parent blends. The hardness of the blends slightly increased after forming the corresponding composites and then declined after the scCO2 treatment.
Collapse
Affiliation(s)
- Kartik Behera
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 333, Taiwan; (K.B.); (C.-H.T.); (X.-B.L.)
| | - Chien-Hsing Tsai
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 333, Taiwan; (K.B.); (C.-H.T.); (X.-B.L.)
| | - Xiang-Bo Liao
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 333, Taiwan; (K.B.); (C.-H.T.); (X.-B.L.)
| | - Fang-Chyou Chiu
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 333, Taiwan; (K.B.); (C.-H.T.); (X.-B.L.)
- Department of General Dentistry, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 243, Taiwan
| |
Collapse
|
3
|
Liu W, Yu W, Wang J, Gao J, Ding Y, Zhang S, Zheng Q. Enhanced mechanical and long-lasting antibacterial properties of starch/PBAT blown films via designing of reactive micro-crosslinked starch. Int J Biol Macromol 2024; 266:131366. [PMID: 38580020 DOI: 10.1016/j.ijbiomac.2024.131366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 03/20/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
A functional starch (TPS-E) was designed and constructed by incorporating epoxy soybean oil (ESO) and an antibacterial agent polyhexamethylene guanidine hydrochloride (PHMG), then the film was prepared by reaction extrusion and blow molding using TPS-E and poly(butylene adipate-co-terephthalate) (PBAT). The micro-crosslinking structure, forming through ring-opening reaction between the epoxy active site of TPS-E and the end group of PBAT, improved the compatibility of starch/PBAT blend and reduce the dispersed starch phase size, leading to significantly increase the tensile strength. Compared to starch/PBAT films, the tensile strength of TPS-E/PBAT in the longitudinal direction increase by 112% with the same starch content of 30%. Furthermore, these TPS-E/PBAT films demonstrated long-lasting antibacterial performance with a 98% inhibition ratio even after 10 cycles, without any observed leaching of the antibacterial agent, highlighting the high coupling efficiency of PHMG. TPS-E with the degradable ESO also promotes the degradation of PBAT. Thus, an important method of synergistic improving the mechanical, degradable and antibacterial properties of blown films through the design of reactive micro-crosslinked starch structures was established.
Collapse
Affiliation(s)
- Wenying Liu
- College of Materials Science & Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Wenwen Yu
- College of Materials Science & Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, China.
| | - Jiaqi Wang
- College of Materials Science & Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Jian Gao
- College of Materials Science & Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Yi Ding
- College of Materials Science & Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Sitong Zhang
- College of Materials Science & Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Qiang Zheng
- Department of Polymer Science & Engineering, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
4
|
Long Z, Wang W, Zhou Y, Yu L, Shen L, Dong Y. Effect of polybutylene adipate terephthalate on the properties of starch/polybutylene adipate terephthalate shape memory composites. Int J Biol Macromol 2023; 240:124452. [PMID: 37068541 DOI: 10.1016/j.ijbiomac.2023.124452] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/30/2023] [Accepted: 04/11/2023] [Indexed: 04/19/2023]
Abstract
In this work, the starch/polybutylene adipate terephthalate (PBAT) composite films with high starch content were prepared by hot-pressing and ultraviolet cross-linking methods using cassava starch, benzophenone (BP), degradable PBAT and citric acid as film-forming substrate, photosensitizer, toughening material and solvent, respectively. The results showed that starch and PBAT had excellent performance, resulting in the composites films exhibit robust tensile strength (9.90 MPa), decent elongation at break (500.05 %) and excellent shape memory property. Under 30 % pre-tensile strain, the shape memory fixity and recovery ratios reached 96.58 % and 93.94 %, respectively. In addition, the starch-based films were successfully rendered hydrophobic by PBAT hydrophobic characteristics. PBAT not only secures the biodegradability of the starch/PBAT composites films, but also improves the mechanical properties of them, and meets the requirements of the thermal shrinkage films when subjected to large strain.
Collapse
Affiliation(s)
- Zhaomeng Long
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Wenjun Wang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Yue Zhou
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Laiming Yu
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Luting Shen
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Yubing Dong
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
5
|
Zhao H, Yu S, Zhang Y, Zhao G. Mechanical properties and structure of injection molded poly(hydroxybutyrate‐co‐hydroxyvalerate)/poly(butylene adipate‐co‐terephthalate) (
PHBV
/
PBAT
) blends. J Appl Polym Sci 2023. [DOI: 10.1002/app.53880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Affiliation(s)
- Haibin Zhao
- Key Laboratory for Liquid‐Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering Shandong University Jinan Shandong China
| | - Shuang Yu
- Key Laboratory for Liquid‐Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering Shandong University Jinan Shandong China
| | - Yaxin Zhang
- Key Laboratory for Liquid‐Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering Shandong University Jinan Shandong China
| | - Guoqun Zhao
- Key Laboratory for Liquid‐Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering Shandong University Jinan Shandong China
| |
Collapse
|
6
|
|
7
|
E-Skin Development and Prototyping via Soft Tooling and Composites with Silicone Rubber and Carbon Nanotubes. MATERIALS 2021; 15:ma15010256. [PMID: 35009402 PMCID: PMC8746103 DOI: 10.3390/ma15010256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 11/17/2022]
Abstract
The strategy of embedding conductive materials on polymeric matrices has produced functional and wearable artificial electronic skin prototypes capable of transduction signals, such as pressure, force, humidity, or temperature. However, these prototypes are expensive and cover small areas. This study proposes a more affordable manufacturing strategy for manufacturing conductive layers with 6 × 6 matrix micropatterns of RTV-2 silicone rubber and Single-Walled Carbon Nanotubes (SWCNT). A novel mold with two cavities and two different micropatterns was designed and tested as a proof-of-concept using Low-Force Stereolithography-based additive manufacturing (AM). The effect SWCNT concentrations (3 wt.%, 4 wt.%, and 5 wt.%) on the mechanical properties were characterized by quasi-static axial deformation tests, which allowed them to stretch up to ~160%. The elastomeric soft material's hysteresis energy (Mullin's effect) was fitted using the Ogden-Roxburgh model and the Nelder-Mead algorithm. The assessment showed that the resulting multilayer material exhibits high flexibility and high conductivity (surface resistivity ~7.97 × 104 Ω/sq) and that robust soft tooling can be used for other devices.
Collapse
|
8
|
Bai J, Pei H, Zhou X, Xie X. Reactive compatibilization and properties of low-cost and high-performance PBAT/thermoplastic starch blends. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110198] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|