1
|
Wang H, Li F, Yang W, Wang Y, Miskevich AA, Loiko VA, Zhang L, Tao S. Impact of Adding N-hexylamine to Nickel Metallophotoredox C-N Coupling to Form Diarylamines. J Org Chem 2025; 90:1233-1244. [PMID: 39787300 DOI: 10.1021/acs.joc.4c02106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
The mechanistic understanding of how alkylamines impact Ni-metallophotoredox C-N coupling to form diarylamines remains unclear. In this study, 12-alkylamines were evaluated as additives to determine their effects on the synthesis of diarylamines in a flow photochemical system. Notably, n-hexylamine demonstrated the most significant promotional effect. Spectroscopic studies and experimental data reveal n-hexylamine substitutes DABCO as a Ni catalyst ligand, enhancing yields particularly in sterically hindered arylamines.
Collapse
Affiliation(s)
- Haiyang Wang
- School of Chemistry, State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian Key Laboratory of Intelligent Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Fujun Li
- School of Chemistry, State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian Key Laboratory of Intelligent Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Wenbo Yang
- School of Chemistry, State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian Key Laboratory of Intelligent Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Yuchao Wang
- School of Chemistry, State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian Key Laboratory of Intelligent Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Alexander A Miskevich
- Institute of Physics, National Academy of Sciences of Belarus, 68-2 Niezalezhnastsi avenue, Minsk 220072, Belarus
| | - Valery A Loiko
- Institute of Physics, National Academy of Sciences of Belarus, 68-2 Niezalezhnastsi avenue, Minsk 220072, Belarus
| | - Lijing Zhang
- School of Chemistry, State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian Key Laboratory of Intelligent Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Shengyang Tao
- School of Chemistry, State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian Key Laboratory of Intelligent Chemistry, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
2
|
Conducting Polymer Metallic Emerald: Magnetic Measurements of Nanocarbons/Polyaniline and Preparation of Plastic Composites. Mol Vis 2022. [DOI: 10.3390/c8040060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Synthesis of polyaniline in the presence of fullerene nanotubes (nanocarbons) in water was carried out with oxidative polymerization. The surface of the sample showed metallic emerald green color in bulk like the brilliance of encrusted gemstones. The composite showed unique magnetic behavior, such as microwave power-dependent magnetic resonance as magnetic spin behavior and macroscopic paramagnetism with a maximum χ value at room temperature evaluated with superconductor interference device. Surface structure of the composite was observed with optical microscopy, circular polarized differential interference contrast optical microscopy, scanning electron microscopy, and electron probe micro analyzer. Polymer blends consisting of polyaniline, nano-carbons, and hydroxypropylcellulose or acryl resin with both conducting polymer and carbon characters were prepared, which can be applied for electrical conducting plastics. The combination of conducting polymer and nano-carbon materials can produce new electro-magneto-active soft materials by forming a composite. This paper reports evaluation of magnetic properties as a new point of nanocarbon and conducting polymer composite.
Collapse
|
3
|
Zhang X, Shi Y, Dang Y, Liang Z, Wang Z, Deng Y, Han Y, Hu W, Geng Y. Direct Arylation Polycondensation of β-Fluorinated Bithiophenes to Polythiophenes: Effect of Side Chains in C–Br Monomers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xuwen Zhang
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Yibo Shi
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Yanfeng Dang
- Department of Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Ziqi Liang
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Zhongli Wang
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Yunfeng Deng
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| | - Yang Han
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Wenping Hu
- Department of Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| | - Yanhou Geng
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| |
Collapse
|
4
|
Beaumont C, Turgeon J, Idir M, Neusser D, Lapointe R, Caron S, Dupont W, D’Astous D, Shamsuddin S, Hamza S, Landry É, Ludwigs S, Leclerc M. Water-Processable Self-Doped Conducting Polymers via Direct (Hetero)arylation Polymerization. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00847] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
| | - Josyane Turgeon
- Département de Chimie, Université Laval, Québec, Québec G1V 0A6, Canada
| | - Maël Idir
- Département de Chimie, Université Laval, Québec, Québec G1V 0A6, Canada
| | - David Neusser
- IPOC-Functional Polymers, Institute of Polymer Chemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Rosalie Lapointe
- Département de Chimie, Université Laval, Québec, Québec G1V 0A6, Canada
| | - Samuel Caron
- Département de Chimie, Université Laval, Québec, Québec G1V 0A6, Canada
| | - William Dupont
- Département de Chimie, Université Laval, Québec, Québec G1V 0A6, Canada
| | - Dominic D’Astous
- Département de Chimie, Université Laval, Québec, Québec G1V 0A6, Canada
| | | | - Sarah Hamza
- Polyanalytik, 700 Collip Circle #202, London, Ontario N6G 4X8, Canada
| | - Éric Landry
- Polyanalytik, 700 Collip Circle #202, London, Ontario N6G 4X8, Canada
| | - Sabine Ludwigs
- IPOC-Functional Polymers, Institute of Polymer Chemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Mario Leclerc
- Département de Chimie, Université Laval, Québec, Québec G1V 0A6, Canada
| |
Collapse
|
5
|
Conelli D, Margiotta N, Grisorio R, Suranna GP. Implementation of Sustainable Solvents in Green Polymerization Approaches. MACROMOL CHEM PHYS 2020. [DOI: 10.1002/macp.202000382] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Daniele Conelli
- Dipartimento di Ingegneria Civile Ambientale del Territorio Edile e di Chimica (DICATECh) Politecnico di Bari Via Orabona 4 Bari 70125 Italy
| | - Nicola Margiotta
- Dipartimento di Chimica Università degli Studi di Bari Aldo Moro Via Orabona 4 Bari 70126 Italy
| | - Roberto Grisorio
- Dipartimento di Ingegneria Civile Ambientale del Territorio Edile e di Chimica (DICATECh) Politecnico di Bari Via Orabona 4 Bari 70125 Italy
| | - Gian Paolo Suranna
- Dipartimento di Ingegneria Civile Ambientale del Territorio Edile e di Chimica (DICATECh) Politecnico di Bari Via Orabona 4 Bari 70125 Italy
- CNR NANOTEC − Istituto di Nanotecnologia Via Monteroni Lecce 73100 Italy
| |
Collapse
|