1
|
Su Y, Li B, Wang Z, Legrand A, Aoyama T, Fu S, Wu Y, Otake KI, Bonn M, Wang HI, Liao Q, Urayama K, Kitagawa S, Huang L, Furukawa S, Gu C. Quasi-Homogeneous Photocatalysis in Ultrastiff Microporous Polymer Aerogels. J Am Chem Soc 2024; 146:15479-15487. [PMID: 38780095 DOI: 10.1021/jacs.4c03862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
The development of efficient and low-cost catalysts is essential for photocatalysis; however, the intrinsically low photocatalytic efficiency as well as the difficulty in using and recycling photocatalysts in powder morphology greatly limit their practical performance. Herein, we describe quasi-homogeneous photocatalysis to overcome these two limitations by constructing ultrastiff, hierarchically porous, and photoactive aerogels of conjugated microporous polymers (CMPs). The CMP aerogels exhibit low density but high stiffness beyond 105 m2 s-2, outperforming most low-density materials. Extraordinary stiffness ensures their use as robust scaffolds for scaled photocatalysis and recycling without damage at the macroscopic level. A challenging but desirable reaction for direct deaminative borylation is demonstrated using CMP aerogel-based quasi-homogeneous photocatalysis with gram-scale productivity and record-high efficiency under ambient conditions. Combined terahertz and transient absorption spectroscopic studies unveil the generation of high-mobility free carriers and long-lived excitonic species in the CMP aerogels, underlying the observed superior catalytic performance.
Collapse
Affiliation(s)
- Yan Su
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, No. 381 Wushan Road, Tianhe District, Guangzhou 510640, PR China
| | - Bo Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, PR China
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, PR China
| | - Zaoming Wang
- Institute for Integrated Cell-Material Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Alexandre Legrand
- Institute for Integrated Cell-Material Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
- Unité de Catalyse et Chimie du Solide (UCCS), CNRS, Centrale Lille, Université de Lille, Université d'Artois, UMR 8181, Lille F-59000, France
| | - Takuma Aoyama
- Department of Macromolecular Science and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Shuai Fu
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55122, Germany
| | - Yishi Wu
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, PR China
| | - Ken-Ichi Otake
- Institute for Integrated Cell-Material Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Mischa Bonn
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55122, Germany
| | - Hai I Wang
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55122, Germany
- Nanophotonics, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, Utrecht 3584 CC, The Netherlands
| | - Qing Liao
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, PR China
| | - Kenji Urayama
- Department of Material Chemistry, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Susumu Kitagawa
- Institute for Integrated Cell-Material Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Liangbin Huang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, PR China
| | - Shuhei Furukawa
- Institute for Integrated Cell-Material Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Cheng Gu
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, No. 381 Wushan Road, Tianhe District, Guangzhou 510640, PR China
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, PR China
| |
Collapse
|
2
|
Rajapaksha R, Samanta P, Quadrelli EA, Canivet J. Heterogenization of molecular catalysts within porous solids: the case of Ni-catalyzed ethylene oligomerization from zeolites to metal-organic frameworks. Chem Soc Rev 2023; 52:8059-8076. [PMID: 37902965 DOI: 10.1039/d3cs00188a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
The last decade has seen a tremendous expansion of the field of heterogenized molecular catalysis, especially with the growing interest in metal-organic frameworks and related porous hybrid solids. With successful achievements in the transfer from molecular homogeneous catalysis to heterogenized processes come the necessary discussions on methodologies used and a critical assessment on the advantages of heterogenizing molecular catalysis. Here we use the example of nickel-catalyzed ethylene oligomerization, a reaction of both fundamental and applied interest, to review heterogenization methodologies of well-defined molecular catalysts within porous solids while addressing the biases in the comparison between original molecular systems and heterogenized counterparts.
Collapse
Affiliation(s)
- Rémy Rajapaksha
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON - UMR 5256, 2 Av. Albert Einstein, 69626 Villeurbanne, France.
| | - Partha Samanta
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON - UMR 5256, 2 Av. Albert Einstein, 69626 Villeurbanne, France.
| | - Elsje Alessandra Quadrelli
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON - UMR 5256, 2 Av. Albert Einstein, 69626 Villeurbanne, France.
| | - Jérôme Canivet
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON - UMR 5256, 2 Av. Albert Einstein, 69626 Villeurbanne, France.
| |
Collapse
|
3
|
Wang S, Xie Z, Zhu D, Fu S, Wu Y, Yu H, Lu C, Zhou P, Bonn M, Wang HI, Liao Q, Xu H, Chen X, Gu C. Efficient photocatalytic production of hydrogen peroxide using dispersible and photoactive porous polymers. Nat Commun 2023; 14:6891. [PMID: 37898686 PMCID: PMC10613291 DOI: 10.1038/s41467-023-42720-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 10/19/2023] [Indexed: 10/30/2023] Open
Abstract
Developing efficient artificial photocatalysts for the biomimetic photocatalytic production of molecular materials, including medicines and clean energy carriers, remains a fundamentally and technologically essential challenge. Hydrogen peroxide is widely used in chemical synthesis, medical disinfection, and clean energy. However, the current industrial production, predominantly by anthraquinone oxidation, suffers from hefty energy penalties and toxic byproducts. Herein, we report the efficient photocatalytic production of hydrogen peroxide by protonation-induced dispersible porous polymers with good charge-carrier transport properties. Significant photocatalytic hydrogen peroxide generation occurs under ambient conditions at an unprecedented rate of 23.7 mmol g-1 h-1 and an apparent quantum efficiency of 11.3% at 450 nm. Combined simulations and spectroscopies indicate that sub-picosecond ultrafast electron "localization" from both free carriers and exciton states at the catalytic reaction centers underlie the remarkable photocatalytic performance of the dispersible porous polymers.
Collapse
Affiliation(s)
- Shengdong Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, 610065, Chengdu, People's Republic of China
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, 510640, Guangzhou, People's Republic of China
| | - Zhipeng Xie
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 350116, Fuzhou, People's Republic of China
| | - Da Zhu
- Institute of Nuclear and New Energy Technology, Tsinghua University, 100084, Beijing, People's Republic of China
| | - Shuai Fu
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55122, Mainz, Germany
| | - Yishi Wu
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, 100048, Beijing, People's Republic of China
| | - Hongling Yu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 350116, Fuzhou, People's Republic of China
| | - Chuangye Lu
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, 510640, Guangzhou, People's Republic of China
| | - Panke Zhou
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 350116, Fuzhou, People's Republic of China
| | - Mischa Bonn
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55122, Mainz, Germany
| | - Hai I Wang
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55122, Mainz, Germany
- Nanophotonics, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC, Utrecht, The Netherlands
| | - Qing Liao
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, 100048, Beijing, People's Republic of China
| | - Hong Xu
- Institute of Nuclear and New Energy Technology, Tsinghua University, 100084, Beijing, People's Republic of China
| | - Xiong Chen
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 350116, Fuzhou, People's Republic of China.
| | - Cheng Gu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, 610065, Chengdu, People's Republic of China.
| |
Collapse
|
4
|
Asano N, Sugihara S, Suye SI, Fujita S. Electrospun Porous Nanofibers with Imprinted Patterns Induced by Phase Separation of Immiscible Polymer Blends. ACS OMEGA 2022; 7:19997-20005. [PMID: 35721947 PMCID: PMC9202247 DOI: 10.1021/acsomega.2c01798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/19/2022] [Indexed: 06/11/2023]
Abstract
Nanofibrous nonwoven fabrics have attracted attention as porous adsorbents with high specific surface areas for the safe and efficient treatment of spilled organic dyes and petroleum. For this purpose, a method of fabricating porous nanofibers with high specific surface areas would be highly beneficial. In this study, the phase separation in nanofibers electrospun from blended solutions of immiscible polymers [poly(styrene) (PS) and poly(vinylpyrrolidone) (PVP)] was investigated. The removal of PVP as a sacrificial polymer afforded the imprinting of mesopores (40-70 nm) in the PS nanofibers. The effects of solution composition (PS/PVP in N,N-dimethylformamide) on the structure formation in the fibers were investigated. The nanofibers thus obtained could selectively adsorb low-molecular-weight hydrophobic dyes, such as Nile Red and Oil Red O. Thus, it is expected that the combined approach of electrospinning of immiscible polymer blends and phase separation-induced patterning can be applied to the fabrication of functional nanofibers for diverse applications.
Collapse
Affiliation(s)
- Narumi Asano
- Department
of Frontier Fiber Technology and Science, Graduate School of Engineering, University of Fukui, 3-9-1, Bunkyo, Fukui 910-8507, Japan
| | - Shinji Sugihara
- Life
Science Innovation Center, University of
Fukui, 3-9-1, Bunkyo, Fukui 910-8507, Japan
- Department
of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1, Bunkyo, Fukui 910-8507, Japan
| | - Shin-ichiro Suye
- Department
of Frontier Fiber Technology and Science, Graduate School of Engineering, University of Fukui, 3-9-1, Bunkyo, Fukui 910-8507, Japan
- Life
Science Innovation Center, University of
Fukui, 3-9-1, Bunkyo, Fukui 910-8507, Japan
| | - Satoshi Fujita
- Department
of Frontier Fiber Technology and Science, Graduate School of Engineering, University of Fukui, 3-9-1, Bunkyo, Fukui 910-8507, Japan
- Life
Science Innovation Center, University of
Fukui, 3-9-1, Bunkyo, Fukui 910-8507, Japan
| |
Collapse
|
5
|
Zhu L, Yuan H, Shi Z, Deng L, Yu Z, Li Y, He Q. Metagenomic insights into the effects of various biocarriers on moving bed biofilm reactors for municipal wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:151904. [PMID: 34838558 DOI: 10.1016/j.scitotenv.2021.151904] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/19/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
Preferable biocarrier is vital for start-up and operation of moving bed biofilm reactor (MBBR). Effects of three separate biocarriers - PPC, PU, and PP on MBBRs were systematically investigated including nutrients removal performances, biomass attachment, microbial community, and relevant functional genes. Results showed that three biocarriers achieved similar removal efficiencies for chemical oxygen demand (COD) and total phosphorus (TP), though much higher biomasses were found attached onto PPC and PU carriers. PPC and PU performed better than PP for ammonia nitrogen (NH4+-N) removal. However, PPC exhibited the greatest and most reliable denitrifying efficiency, mainly due to stronger simultaneous nitrification and denitrification during better micro-anoxic-environment created within PPC carriers than others. Further studies by 16S rRNA gene and metagenomic sequencing analysis uncovered the bacterial diversity and structures, and relevant functional genes for nitrogen-transformation and pathways of nitrogen metabolisms, which laid the biological basis for the best performances via biocarrier PPC. This study inspired a feasible approach for municipal wastewater treatment through PPC filled MBBR.
Collapse
Affiliation(s)
- Liang Zhu
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha 410082, China
| | - Huizhou Yuan
- School of Materials & Environmental Engineering, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Zhou Shi
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha 410082, China.
| | - Lin Deng
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha 410082, China
| | - Zefang Yu
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha 410082, China
| | - Yong Li
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha 410082, China
| | - Qiulai He
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha 410082, China.
| |
Collapse
|
6
|
He Y, Bao W, Hua Y, Guo Z, Fu X, Na B, Yuan D, Peng C, Liu H. Efficient adsorption of methyl orange and methyl blue dyes by a novel triptycene-based hyper-crosslinked porous polymer. RSC Adv 2022; 12:5587-5594. [PMID: 35425553 PMCID: PMC8981499 DOI: 10.1039/d1ra08589a] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/14/2022] [Indexed: 12/20/2022] Open
Abstract
It is still a great challenge to develop new materials for the highly efficient entrapment of organic dyes from aqueous solution. Herein, a novel triptycene-based hyper-crosslinked porous polymer (TPP-PP) was designed and synthesized by a simple Friedel-Crafts reaction. The obtained polymer TPP-PP has a high surface area, abundant pore structure and stable thermal performance. Due to the above characteristics, TPP-PP has good adsorption performance for anionic methyl orange solution (MO) and cationic methyl blue solution (MB). Under the optimal experiment conditions, the TPP-PP showed an excellent adsorption capacity for MO (220.82 mg g-1) and MB (159.80 mg g-1), respectively. The adsorption kinetics fitted the pseudo-second-order model. The adsorption of MO by TPP-PP reaches equilibrium within 180 minutes, and the adsorption of MB reaches equilibrium within 150 minutes. The adsorption behavior was not only spontaneous but also endothermic in reality. At the same time, TPP-PP also has good reusability. After 5 cycles of experiments, the removal rate of MO and MB by TPP-PP can still reach more than 80%. Thus, the Friedel-Crafts reaction crosslinked method might be a promising approach for the synthesis of novel material for the highly efficient extraction of dye wastewater.
Collapse
Affiliation(s)
- Yan He
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry, Biology and Materials Science, East China University of Technology Nanchang 330013 China
- Key Laboratory for Advanced Materials, Department of Chemistry, East China University of Science and Technology Shanghai 200237 China
| | - Wenli Bao
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry, Biology and Materials Science, East China University of Technology Nanchang 330013 China
| | - Yingcen Hua
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry, Biology and Materials Science, East China University of Technology Nanchang 330013 China
| | - Zhulei Guo
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry, Biology and Materials Science, East China University of Technology Nanchang 330013 China
| | - Xiaolei Fu
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry, Biology and Materials Science, East China University of Technology Nanchang 330013 China
| | - Bing Na
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry, Biology and Materials Science, East China University of Technology Nanchang 330013 China
| | - Dingzhong Yuan
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry, Biology and Materials Science, East China University of Technology Nanchang 330013 China
| | - Changjun Peng
- Key Laboratory for Advanced Materials, Department of Chemistry, East China University of Science and Technology Shanghai 200237 China
| | - Honglai Liu
- Key Laboratory for Advanced Materials, Department of Chemistry, East China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
7
|
Silverstein MS. From “Makromolekel” to POLYMER: A Centennial Celebration of Staudinger's “On Polymerization”. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Yang S, Yong X, Zhao B, Wu Y, Deng J. Biomass‐Derived Acetylenic Polymer Monoliths Prepared by High Internal Phase Emulsion Template Method and Used for Adsorbing Cationic Pollutants. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202000448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Shenghua Yang
- State Key Laboratory of Chemical Resource Engineering College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Xueyong Yong
- State Key Laboratory of Chemical Resource Engineering College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
- State Key Laboratory of Organic‐Inorganic Composites College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Biao Zhao
- State Key Laboratory of Chemical Resource Engineering College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Youping Wu
- State Key Laboratory of Organic‐Inorganic Composites College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Jianping Deng
- State Key Laboratory of Chemical Resource Engineering College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| |
Collapse
|