1
|
Jeddi J, Niskanen J, Lessard BH, Sangoro J. Ion transport in polymerized ionic liquids: a comparison of polycation and polyanion systems. Faraday Discuss 2024; 253:426-440. [PMID: 39101858 DOI: 10.1039/d4fd00070f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
The correlation among chemical structure, mesoscale structure, and ion transport in 1,2,3-triazole-based polymerized ionic liquids (polyILs) featuring comparable polycation and polyanion backbones is investigated by wide-angle X-ray scattering (WAXS), differential scanning calorimetry, and broadband dielectric spectroscopy (BDS). Above the glass transition temperature, Tg, higher ionic conductivity is observed in polycation polyILs compared to their polyanion counterparts, and ion conduction is enhanced by increasing the counterion volume in both polycation or polyanion polyILs. Below Tg, polyanions show lower activation energy associated with ion conduction. However, the validity of the Barton-Nakajima-Namikawa relation indicates that hopping conduction is the dominant charge transport mechanism in all the polyILs studied. While a significant transition from a Vogel-Fulcher-Tammann to Arrhenius type of thermal activation is observed below Tg, the decoupling index, often used to quantify the extent to which segmental dynamics and ion conduction are correlated, remains unaltered for the polyILs studied, suggesting that this index may not be a general parameter to characterize charge transport in polymerized ionic liquids. Furthermore, detailed analyses of the WAXS results indicate that both the mobile ion type and the structure of the pendant groups control mesoscale organization. These findings are discussed within the framework of recent models, which account for the subtle interplay between electrostatic and elastic forces in determining ion transport in polyILs. The findings demonstrate the intricate balance between the chemical structure and interactions in polyILs that determine ion conduction in this class of polymer electrolytes.
Collapse
Affiliation(s)
- Javad Jeddi
- Department of Chemical and Biomolecular Engineering Ohio State University, Columbus, Ohio 43210, USA.
| | - Jukka Niskanen
- Department of Chemical and Metallurgical Engineering, Aalto University, Kemistintie 1, 02150 Espoo, Finland
| | - Benoît H Lessard
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, Ontario K1N 6N5, Canada.
- School of Electrical Engineering and Computer Science, University of Ottawa, 800 King Edward Ave, Ottawa, ON, K1N 6N5, Canada
| | - Joshua Sangoro
- Department of Chemical and Biomolecular Engineering Ohio State University, Columbus, Ohio 43210, USA.
| |
Collapse
|
2
|
Stebletsova IA, Larin AA, Ananyev IV, Fershtat LL. Regioselective Synthesis of NO-Donor (4-Nitro-1,2,3-triazolyl)furoxans via Eliminative Azide-Olefin Cycloaddition. Molecules 2023; 28:6969. [PMID: 37836813 PMCID: PMC10574565 DOI: 10.3390/molecules28196969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/29/2023] [Accepted: 10/01/2023] [Indexed: 10/15/2023] Open
Abstract
A facile and efficient method for the regioselective [3 + 2] cycloaddition of 4-azidofuroxans to 1-dimethylamino-2-nitroethylene under p-TSA catalysis affording (4-nitro-1,2,3-triazolyl)furoxans was developed. This transformation is believed to proceed via eliminative azide-olefin cycloaddition resulting in its complete regioselectivity. The developed protocol has a broad substrate scope and enables a straightforward assembly of the 4-nitro-1,2,3-triazole motif. Moreover, synthesized (4-nitro-1,2,3-triazolyl)furoxans were found to be capable of NO release in a broad range of concentrations, thus providing a novel platform for future drug design and related biomedical applications of heterocyclic NO donors.
Collapse
Affiliation(s)
- Irina A. Stebletsova
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, 119991 Moscow, Russia; (I.A.S.); (A.A.L.)
- D.I. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya Square, 125047 Moscow, Russia
| | - Alexander A. Larin
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, 119991 Moscow, Russia; (I.A.S.); (A.A.L.)
| | - Ivan V. Ananyev
- N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, GSP-1, Leninsky Prospect, 31, 119991 Moscow, Russia;
| | - Leonid L. Fershtat
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, 119991 Moscow, Russia; (I.A.S.); (A.A.L.)
| |
Collapse
|
3
|
Nosov D, Ronnasi B, Lozinskaya EI, Ponkratov DO, Puchot L, Grysan P, Schmidt DF, Lessard BH, Shaplov AS. Mechanically Robust Poly(ionic liquid) Block Copolymers as Self-Assembling Gating Materials for Single-Walled Carbon-Nanotube-Based Thin-Film Transistors. ACS APPLIED POLYMER MATERIALS 2023; 5:2639-2653. [PMID: 37090422 PMCID: PMC10111415 DOI: 10.1021/acsapm.2c02223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/27/2023] [Indexed: 05/03/2023]
Abstract
The proliferation of high-performance thin-film electronics depends on the development of highly conductive solid-state polymeric materials. We report on the synthesis and properties investigation of well-defined cationic and anionic poly(ionic liquid) AB-C type block copolymers, where the AB block was formed by random copolymerization of highly conductive anionic or cationic monomers with poly(ethylene glycol) methyl ether methacrylate, while the C block was obtained by post-polymerization of 2-phenylethyl methacrylate. The resulting ionic block copolymers were found to self-assemble into a lamellar morphology, exhibiting high ionic conductivity (up to 3.6 × 10-6 S cm-1 at 25 °C) and sufficient electrochemical stability (up to 3.4 V vs Ag+/Ag at 25 °C) as well as enhanced viscoelastic (mechanical) performance (storage modulus up to 3.8 × 105 Pa). The polymers were then tested as separators in two all-solid-state electrochemical devices: parallel plate metal-insulator-metal (MIM) capacitors and thin-film transistors (TFTs). The laboratory-scale truly solid-state MIM capacitors showed the start of electrical double-layer (EDL) formation at ∼103 Hz and high areal capacitance (up to 17.2 μF cm-2). For solid-state TFTs, low hysteresis was observed at 10 Hz due to the completion of EDL formation and the devices were found to have low threshold voltages of -0.3 and 1.1 V for p-type and n-type operations, respectively.
Collapse
Affiliation(s)
- Daniil
R. Nosov
- Luxembourg
Institute of Science and Technology (LIST), 5 Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg
- Department
of Physics and Materials Science, University
of Luxembourg, 2 Avenue
de l’Université, L-4365 Esch-sur-Alzette, Luxembourg
| | - Bahar Ronnasi
- Department
of Chemical & Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, Ontario K1N 6N5, Canada
| | - Elena I. Lozinskaya
- A.N.
Nesmeyanov Institute of Organoelement Compounds Russian Academy of
Sciences (INEOS RAS), Vavilov str. 28, bld. 1, 119334 Moscow, Russia
| | - Denis O. Ponkratov
- A.N.
Nesmeyanov Institute of Organoelement Compounds Russian Academy of
Sciences (INEOS RAS), Vavilov str. 28, bld. 1, 119334 Moscow, Russia
| | - Laura Puchot
- Luxembourg
Institute of Science and Technology (LIST), 5 Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg
| | - Patrick Grysan
- Luxembourg
Institute of Science and Technology (LIST), 5 Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg
| | - Daniel F. Schmidt
- Luxembourg
Institute of Science and Technology (LIST), 5 Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg
| | - Benoît H. Lessard
- Department
of Chemical & Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, Ontario K1N 6N5, Canada
- School
of Electrical Engineering and Computer Science, University of Ottawa, 800 King Edward Avenue, Ottawa, Ontario K1N 6N5, Canada
| | - Alexander S. Shaplov
- Luxembourg
Institute of Science and Technology (LIST), 5 Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg
| |
Collapse
|
4
|
Gómez-Sánchez G, Olivares-Xometl O, Likhanova NV, Arellanes-Lozada P, Lijanova IV, Díaz-Jiménez V, Guzmán-Lucero D, Arriola-Morales J. Inhibition Mechanism of Some Vinylalkylimidazolium-Based Polymeric Ionic Liquids against Acid Corrosion of API 5L X60 Steel: Electrochemical and Surface Studies. ACS OMEGA 2022; 7:37807-37824. [PMID: 36312349 PMCID: PMC9608421 DOI: 10.1021/acsomega.2c04787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
A corrosion inhibition mechanism of API 5L X60 steel exposed to 1.0 M H2SO4 was proposed from the evaluation of three vinylalkylimidazolium poly(ionic liquids) (PILs), employing electrochemical and surface analysis techniques. The synthesized PILs were classified as mixed-type inhibitors whose surface adsorption was promoted mainly by bromide and imidazolate ions, which along with vinylimidazolium cations exerted a resistive effect driven by a charge transfer process by means of a protective PIL film with maximal efficiency of 85% at 175 ppm; the steel surface displayed less surface damage due to the formation of metal-PIL complex compounds.
Collapse
Affiliation(s)
- Giselle Gómez-Sánchez
- Benemérita
Universidad Autónoma de Puebla, Facultad de Ingeniería
Química, Av. San Claudio y 18 Sur, Ciudad Universitaria, Col. Jardines de
San Manuel, C. P. 72570, Puebla, Puebla, México
| | - Octavio Olivares-Xometl
- Benemérita
Universidad Autónoma de Puebla, Facultad de Ingeniería
Química, Av. San Claudio y 18 Sur, Ciudad Universitaria, Col. Jardines de
San Manuel, C. P. 72570, Puebla, Puebla, México
| | - Natalya V. Likhanova
- Instituto
Mexicano del Petróleo, Gerencia de Materiales y Desarrollo
de Productos Químicos, Eje Central Lázaro Cárdenas No. 152,
Col. San Bartolo Atepehuacan, C. P.
07730, Ciudad de México, CDMX, México
| | - Paulina Arellanes-Lozada
- Benemérita
Universidad Autónoma de Puebla, Facultad de Ingeniería
Química, Av. San Claudio y 18 Sur, Ciudad Universitaria, Col. Jardines de
San Manuel, C. P. 72570, Puebla, Puebla, México
| | - Irina V. Lijanova
- Instituto
Politécnico Nacional, CIITEC, Cerrada
Cecati S/N, Colonia Santa
Catarina, Azcapotzalco, C. P. 02250, Ciudad de México, CDMX, México
| | - Víctor Díaz-Jiménez
- Benemérita
Universidad Autónoma de Puebla, Facultad de Ingeniería
Química, Av. San Claudio y 18 Sur, Ciudad Universitaria, Col. Jardines de
San Manuel, C. P. 72570, Puebla, Puebla, México
| | - Diego Guzmán-Lucero
- Instituto
Mexicano del Petróleo, Gerencia de Materiales y Desarrollo
de Productos Químicos, Eje Central Lázaro Cárdenas No. 152,
Col. San Bartolo Atepehuacan, C. P.
07730, Ciudad de México, CDMX, México
| | - Janette Arriola-Morales
- Benemérita
Universidad Autónoma de Puebla, Facultad de Ingeniería
Química, Av. San Claudio y 18 Sur, Ciudad Universitaria, Col. Jardines de
San Manuel, C. P. 72570, Puebla, Puebla, México
| |
Collapse
|
5
|
Wang C, Li Q, Wang S, Zhu G, Zhu A, Li L. Copper-catalyzed in situ oxidative-coupling for one-pot synthesis of 5-aryl-1,4-disubstituted 1,2,3-triazoles under mild conditions. RSC Adv 2021; 11:38108-38114. [PMID: 35498067 PMCID: PMC9043963 DOI: 10.1039/d1ra06827j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/07/2021] [Indexed: 11/21/2022] Open
Abstract
A new reaction system with CuCl as catalyst, TEA as base and O2/chloramine-T as oxidant was developed for one-pot in situ oxidative-coupling to synthesize 5-aryl-1,4-disubstituted 1,2,3-triazoles in this paper. A variety of 5-arylated-1,2,3-triazole compounds could be efficiently prepared directly from the readily accessible organic azides, terminal alkynes and arylboronic acids. Advantages of the method include use of low-cost catalyst, clean oxidant, less-toxic additive, and low reaction temperature. Importantly, due to avoiding harsh strong basic reagents and high temperatures, the presented method can offer mild conditions for multi-component synthesis of 5-aryl-1,2,3-triazoles from the designed structurally complicated alkynyl or azide donors bearing natural product motifs and sensitive functional groups.
Collapse
Affiliation(s)
- Chao Wang
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University Xinxiang Henan 453007 China
| | - Qianqian Li
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University Xinxiang Henan 453007 China
| | - Shilei Wang
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University Xinxiang Henan 453007 China
| | - Gongming Zhu
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University Xinxiang Henan 453007 China
| | - Anlian Zhu
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University Xinxiang Henan 453007 China
| | - Lingjun Li
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University Xinxiang Henan 453007 China
| |
Collapse
|
6
|
Peltekoff A, Brixi S, Niskanen J, Lessard BH. Ionic Liquid Containing Block Copolymer Dielectrics: Designing for High-Frequency Capacitance, Low-Voltage Operation, and Fast Switching Speeds. JACS AU 2021; 1:1044-1056. [PMID: 34467348 PMCID: PMC8395628 DOI: 10.1021/jacsau.1c00133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Indexed: 05/09/2023]
Abstract
Polymerized ionic liquids (PILs) are a potential solution to the large-scale production of low-power consuming organic thin-film transistors (OTFTs). When used as the device gating medium in OTFTs, PILs experience a double-layer capacitance that enables thickness independent, low-voltage operation. PIL microstructure, polymer composition, and choice of anion have all been reported to have an effect on device performance, but a better structure property relationship is still required. A library of 27 well-defined, poly(styrene)-b-poly(1-(4-vinylbenzyl)-3-butylimidazolium-random-poly(ethylene glycol) methyl ether methacrylate) (poly(S)-b-poly(VBBI+[X]-r-PEGMA)) block copolymers, with varying PEGMA/VBBI+ ratios and three different mobile anions (where X = TFSI-, PF6 - or BF4 -), were synthesized, characterized and integrated into OTFTs. The fraction of VBBI+ in the poly(VBBI+[X]-r-PEGMA) block ranged from to 100 mol % and led to glass transition temperatures (T g) between -7 and 55 °C for that block. When VBBI+ composition was equal or above 50 mol %, the block copolymer self-assembled into well-ordered domains with sizes between 22 and 52 nm, depending on the composition and choice of anion. The block copolymers double-layer capacitance (C DL) and ionic conductivity (σ) were found to correlate to the polymer self-assembly and the T g of the poly(VBBI+[X]-r-PEGMA) block. Finally, the block copolymers were integrated into OTFTs as the gating medium that led to n-type devices with threshold voltages of 0.5-1.5 V while maintaining good electron mobilities. We also found that the greater the σ of the PIL, the greater the OTFT operating frequency could reach. However, we also found that C DL is not strictly proportional to OTFT output currents.
Collapse
Affiliation(s)
- Alexander
J. Peltekoff
- Department
of Chemical & Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, Ontario, Canada K1N 6N5
| | - Samantha Brixi
- Department
of Chemical & Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, Ontario, Canada K1N 6N5
| | - Jukka Niskanen
- Department
of Chemical & Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, Ontario, Canada K1N 6N5
| | - Benoît H. Lessard
- Department
of Chemical & Biological Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, Ontario, Canada K1N 6N5
- School
of Electrical Engineering and Computer Science, University of Ottawa, 800 King Edward, Ottawa, Ontario, Canada K1N 6N5
| |
Collapse
|