1
|
Xue T, Peng L, Syzgantseva OA, Syzgantseva MA, Guo P, Lai H, Li R, Chen J, Li S, Yan X, Yang S, Li J, Han B, Queen WL. Rapid, Selective Extraction of Silver from Complex Water Matrices with a Metal-Organic Framework/Oligomer Composite Constructed via Supercritical CO 2. Angew Chem Int Ed Engl 2023; 62:e202309737. [PMID: 37665693 DOI: 10.1002/anie.202309737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/24/2023] [Accepted: 09/04/2023] [Indexed: 09/06/2023]
Abstract
Every year vast quantities of silver are lost in various waste streams; this, combined with its limited, diminishing supply and rising demand, makes silver recovery of increasing importance. Thus, herein, we report a controllable, green process to produce a host of highly porous metal-organic framework (MOF)/oligomer composites using supercritical carbon dioxide (ScCO2 ) as a medium. One resulting composite, referred to as MIL-127/Poly-o-phenylenediamine (PoPD), has an excellent Ag+ adsorption capacity, removal efficiency (>99 %) and provides rapid Ag+ extraction in as little as 5 min from complex liquid matrices. Notably, the composite can also reduce sliver concentrations below the levels (<0.1 ppm) established by the United States Environmental Protection Agency. Using theoretical simulations, we find that there are spatially ordered polymeric units inside the MOF that promote the complexation of Ag+ over other common competing ions. Moreover, the oligomer is able to reduce silver to its metallic state, also providing antibacterial properties.
Collapse
Affiliation(s)
- Tianwei Xue
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Li Peng
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Olga A Syzgantseva
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Maria A Syzgantseva
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Peiwen Guo
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Huiyan Lai
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Ruiqing Li
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Jiawen Chen
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Shumu Li
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiaomei Yan
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Shuliang Yang
- College of Energy, Xiamen University, Xiamen, Fujian, 361102, China
| | - Jun Li
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wendy L Queen
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, 1951, Sion, Switzerland
| |
Collapse
|