1
|
Jin D, Tian W, Guo W, He H, Liang J, Ji H, Li X, Li D, Jin P. Gel beads prepared by polyvinyl alcohol cross-linking with phytic acid and Fe as novel microbial carriers for simultaneous partial nitrification, anammox and denitrification. BIORESOURCE TECHNOLOGY 2024; 410:131245. [PMID: 39151566 DOI: 10.1016/j.biortech.2024.131245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/24/2024] [Accepted: 08/06/2024] [Indexed: 08/19/2024]
Abstract
Enhancing the stability of biomass and ensuring a stable activity of anaerobic ammonia oxidizing bacteria are crucial for successful operation of the simultaneous partial nitrification, Anammox, and denitrification (SNAD) process. In this study, gel beads of polyvinyl alcohol/phytic acid (PVA/PA) and polyvinyl alcohol/phytic acid/Fe (PVA/PA/Fe) were prepared as innovative bio-carriers. Theoretical simulations and analyses revealed that these carriers are predominantly connected via hydrogen and borate bonds, with PVA/PA/Fe also featuring metal coordination bonds. The total nitrogen removal efficiency of reactors with PVA/PA/Fe and PVA/PA increased by 13.5 % and 9.0 %, respectively, compared to reactor without carriers. The iron-enriched PVA/PA/Fe carriers significantly improve SNAD by promoting Anammox, Feammox, and nitrate-dependent Fe2+ oxidation reactions, leading to faster nitrogen conversion and higher nitrogen removal rate than reactor without carriers and with PVA/PA. Using of PVA/PA and PVA/PA/Fe gel beads as bio-carriers offers benefits to the SNAD process, including cost-effective and low carbon requirement.
Collapse
Affiliation(s)
- Deyuan Jin
- Department of Environmental Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Wenqing Tian
- Department of Environmental Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Wuke Guo
- Department of Environmental Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Haochen He
- Department of Environmental Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jidong Liang
- Department of Environmental Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Hua Ji
- Suez Water Treatment Company Limited, Beijing 100026, China.
| | - Xiaofeng Li
- Shaanxi Construction Engineering Installation Group Co., Ltd, Xi'an 710000, China
| | - Dangyong Li
- Shaanxi Construction Engineering Installation Group Co., Ltd, Xi'an 710000, China
| | - Pengkang Jin
- Department of Environmental Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
2
|
Dilwale S, Puthiyaveetil PP, Babu A, Kurungot S. Phytic Acid Customized Hydrogel Polymer Electrolyte and Prussian Blue Analogue Cathode Material for Rechargeable Zinc Metal Hydrogel Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311923. [PMID: 38616777 DOI: 10.1002/smll.202311923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/14/2024] [Indexed: 04/16/2024]
Abstract
Zinc anode deterioration in aqueous electrolytes, and Zn dendrite growth is a major concern in the operation of aqueous rechargeable Zn metal batteries (AZMBs). To tackle this, the replacement of aqueous electrolytes with a zinc hydrogel polymer electrolyte (ZHPE) is presented in this study. This method involves structural modifications of the ZHPE by phytic acid through an ultraviolet (UV) light-induced photopolymerization process. The high membrane flexibility, high ionic conductivity (0.085 S cm-1), improved zinc corrosion overpotential, and enhanced electrochemical stability value of ≈2.3 V versus Zn|Zn2+ show the great potential of ZHPE as an ideal gel electrolyte for rechargeable zinc metal hydrogel batteries (ZMHBs). This is the first time that the dominating effect of chelation of phytic acid with M2+ center over H-bonding with water is described to tune the gel electrolyte properties for battery applications. The ZHPE shows ultra-high stability over 360 h with a capacity of 0.50 mAh cm-2 with dendrite-free plating/stripping in Zn||Zn symmetric cell. The fabrication of the ZMHB with a high-voltage zinc hexacyanoferrate (ZHF) cathode shows a high-average voltage of ≈1.6 V and a comparable capacity output of 63 mAh g-1 at 0.10 A g-1 of the current rate validating the potential application of ZHPE.
Collapse
Affiliation(s)
- Swati Dilwale
- Physical & Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, -201002, India
| | - Priyanka Pandinhare Puthiyaveetil
- Physical & Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, -201002, India
| | - Athira Babu
- Physical & Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, -201002, India
| | - Sreekumar Kurungot
- Physical & Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, -201002, India
| |
Collapse
|
3
|
Diacon A, Albota F, Mocanu A, Brincoveanu O, Podaru AI, Rotariu T, Ahmad AA, Rusen E, Toader G. Dual-Responsive Hydrogels for Mercury Ion Detection and Removal from Wastewater. Gels 2024; 10:113. [PMID: 38391443 PMCID: PMC10887514 DOI: 10.3390/gels10020113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/12/2024] [Accepted: 01/26/2024] [Indexed: 02/24/2024] Open
Abstract
This study describes the development of a fast and cost-effective method for the detection and removal of Hg2+ ions from aqueous media, consisting of hydrogels incorporating chelating agents and a rhodamine derivative (to afford a qualitative evaluation of the heavy metal entrapment inside the 3D polymeric matrix). These hydrogels, designed for the simultaneous detection and entrapment of mercury, were obtained through the photopolymerization of 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPSA) and N-vinyl-2-pyrrolidone (NVP), utilizing N,N'-methylenebisacrylamide (MBA) as crosslinker, in the presence of polyvinyl alcohol (PVA), a rhodamine B derivative, and one of the following chelating agents: phytic acid, 1,3-diamino-2-hydroxypropane-tetraacetic acid, triethylenetetramine-hexaacetic acid, or ethylenediaminetetraacetic acid disodium salt. The rhodamine derivative had a dual purpose in this study: firstly, it was incorporated into the hydrogel to allow the qualitative evaluation of mercury entrapment through its fluorogenic switch-off abilities when sensing Hg2+ ions; secondly, it was used to quantitatively evaluate the level of residual mercury from the decontaminated aqueous solutions, via the UV-Vis technique. The ICP-MS analysis of the hydrogels also confirmed the successful entrapment of mercury inside the hydrogels and a good correlation with the UV-Vis method.
Collapse
Affiliation(s)
- Aurel Diacon
- Military Technical Academy "Ferdinand I", 39-49 G. Cosbuc Blvd., 050141 Bucharest, Romania
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politechnica Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
| | - Florin Albota
- Horia Hulubei National Institute of Physics and Nuclear Engineering, 30 Reactorului Street, 077125 Magurele, Romania
| | - Alexandra Mocanu
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politechnica Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
- National Institute for Research and Development in Microtechnologies-IMT Bucharest, 126A Erou Iancu Nicolae Street, 077190 Bucharest, Romania
| | - Oana Brincoveanu
- National Institute for Research and Development in Microtechnologies-IMT Bucharest, 126A Erou Iancu Nicolae Street, 077190 Bucharest, Romania
- Research Institute, University of Bucharest, 90 Sos. Panduri, 050663 Bucharest, Romania
| | - Alice Ionela Podaru
- Military Technical Academy "Ferdinand I", 39-49 G. Cosbuc Blvd., 050141 Bucharest, Romania
| | - Traian Rotariu
- Military Technical Academy "Ferdinand I", 39-49 G. Cosbuc Blvd., 050141 Bucharest, Romania
| | - Ahmad A Ahmad
- Department of Physical Sciences, Jordan University of Science & Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Edina Rusen
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politechnica Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
| | - Gabriela Toader
- Military Technical Academy "Ferdinand I", 39-49 G. Cosbuc Blvd., 050141 Bucharest, Romania
| |
Collapse
|
4
|
Boudjelida S, Djellali S, Ferkous H, Benguerba Y, Chikouche I, Carraro M. Physicochemical Properties and Atomic-Scale Interactions in Polyaniline (Emeraldine Base)/Starch Bio-Based Composites: Experimental and Computational Investigations. Polymers (Basel) 2022; 14:polym14081505. [PMID: 35458254 PMCID: PMC9029945 DOI: 10.3390/polym14081505] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 11/16/2022] Open
Abstract
The processability of conductive polymers still represents a challenge. The use of potato starch as a steric stabilizer for the preparation of stable dispersions of polyaniline (emeraldine base, EB) is described in this paper. Biocomposites are obtained by oxidative polymerization of aniline in aqueous solutions containing different ratios of aniline and starch (% w/w). PANI-EB/Starch biocomposites are subjected to structural analysis (UV-Visible, RAMAN, ATR, XRD), thermal analysis (TGA, DSC), morphological analysis (SEM, Laser Granulometry), and electrochemical analysis using cyclic voltammetry. The samples were also tested for their solubility using various organic solvents. The results showed that, with respect to starch particles, PANI/starch biocomposites exhibit an overall decrease in particles size, which improves both their aqueous dispersion and solubility in organic solvents. Although X-ray diffraction and DSC analyses indicated a loss of crystallinity in biocomposites, the cyclic voltammetry tests revealed that all PANI-EB/Starch biocomposites possess improved redox exchange properties. Finally, the weak interactions at the atomic-level interactions between amylopectin–aniline and amylopectin–PANI were disclosed by the computational studies using DFT, COSMO-RS, and AIM methods.
Collapse
Affiliation(s)
- Soufiane Boudjelida
- Laboratory LMSE, University Mohamed El Bachir El Ibrahimi, Bordj Bou Arreridj 34030, Algeria;
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Souad Djellali
- Laboratoire de Physico-Chimie des Hauts Polymères, University Ferhat Abbas Setif-1, Setif 19000, Algeria
- Department of Chemistry, Faculty of Sciences, University Ferhat Abbas Setif-1, Setif 19000, Algeria
- Correspondence: (S.D.); (M.C.)
| | - Hana Ferkous
- Laboratoire de Génie Mécanique et Matériaux, Faculté de Technologie, Université de 20 août 1955 de Skikda, Skikda 21000, Algeria;
- Département de Technologie, Université de 20 août 1955 de Skikda, Skikda 21000, Algeria
| | - Yacine Benguerba
- Department of Process Engineering, Faculty of Technology, University Ferhat Abbas Setif 1, Setif 19000, Algeria;
| | - Imane Chikouche
- Laboratoire Croissance et Caractérisation de Nouveaux Semi-Conducteurs, Faculté de Technologie, Université Sétif 1, Setif 19000, Algeria;
| | - Mauro Carraro
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
- ITM-CNR, UoS of Padova, Via Marzolo 1, 35131 Padova, Italy
- Correspondence: (S.D.); (M.C.)
| |
Collapse
|
5
|
Khodadadi Yazdi M, Zarrintaj P, Khodadadi A, Arefi A, Seidi F, Shokrani H, Saeb MR, Mozafari M. Polysaccharide-based electroconductive hydrogels: Structure, properties and biomedical applications. Carbohydr Polym 2022; 278:118998. [PMID: 34973800 DOI: 10.1016/j.carbpol.2021.118998] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/06/2021] [Accepted: 12/06/2021] [Indexed: 01/16/2023]
Abstract
Architecting an appropriate platform for biomedical applications requires setting a balance between simplicity and complexity. Polysaccharides (PSAs) play essential roles in our life in food resources, structural materials, and energy storage capacitors. Moreover, the diversity and abundance of PSAs have made them an indispensable part of food ingredients and cosmetics. PSA-based hydrogels have been extensively reviewed in biomedical applications. These hydrogels can be designed in different forms to show optimum performance. For instance, electroactive PSA-based hydrogels respond under an electric stimulus. Such performance can be served in stimulus drug release and determining cell fate. This review classifies and discusses the structure, properties, and applications of the most important polysaccharide-based electroactive hydrogels (agarose, alginate, chitosan, cellulose, and dextran) in medicine, focusing on their usage in tissue engineering, flexible electronics, and drug delivery applications.
Collapse
Affiliation(s)
- Mohsen Khodadadi Yazdi
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Payam Zarrintaj
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK 74078, United States
| | - Ali Khodadadi
- Department of Internal Medicine, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Ahmad Arefi
- Department of Chemical Engineering, McMaster University, Hamilton, Canada
| | - Farzad Seidi
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| | - Hanieh Shokrani
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Masoud Mozafari
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Tamesue S, Saito Y, Toita R. Salinity durable self-healing hydrogels as functional biomimetic systems based on the intercalation of polymer ions into mica. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|