1
|
Zhou G, Zhang H, Su Z, Zhang X, Zhou H, Yu L, Chen C, Wang X. A Biodegradable, Waterproof, and Thermally Processable Cellulosic Bioplastic Enabled by Dynamic Covalent Modification. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2301398. [PMID: 37127887 DOI: 10.1002/adma.202301398] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/13/2023] [Indexed: 05/03/2023]
Abstract
The growing environmental concern over petrochemical-based plastics continuously promotes the exploration of green and sustainable substitute materials. Compared with petrochemical products, cellulose has overwhelming superiority in terms of availability, cost, and biodegradability; however, cellulose's dense hydrogen-bonding network and highly ordered crystalline structure make it hard to be thermoformed. A strategy to realize the partial disassociation of hydrogen bonds in cellulose and the reassembly of cellulose chains via constructing a dynamic covalent network, thereby endowing cellulose with thermal processability as indicated by the observation of a moderate glass transition temperature (Tg = 240 °C), is proposed. Moreover, the cellulosic bioplastic delivers a high tensile strength of 67 MPa, as well as excellent moisture and solvent resistance, good recyclability, and biodegradability in nature. With these advantageous features, the developed cellulosic bioplastic represents a promising alternative to traditional plastics.
Collapse
Affiliation(s)
- Guowen Zhou
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, 510640, Guangzhou, China
| | - Haishan Zhang
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, 510640, Guangzhou, China
| | - Zhiping Su
- Wood Industry and Furniture Engineering Key Laboratory of Sichuan Provincial Department of Education, College of Forestry, Sichuan Agricultural University, 611130, Chengdu, China
| | - Xiaoqian Zhang
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, 510640, Guangzhou, China
| | - Haonan Zhou
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, 510640, Guangzhou, China
| | - Le Yu
- Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, School of Resource and Environmental Sciences, Wuhan University, Wuhan, 430079, China
| | - Chaoji Chen
- Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, School of Resource and Environmental Sciences, Wuhan University, Wuhan, 430079, China
| | - Xiaohui Wang
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, 510640, Guangzhou, China
| |
Collapse
|
2
|
Li C, Ju B, Zhang S. Fully bio-based hydroxy ester vitrimer synthesized by crosslinking epoxidized soybean oil with doubly esterified starch. Carbohydr Polym 2023; 302:120442. [PMID: 36604037 DOI: 10.1016/j.carbpol.2022.120442] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/25/2022] [Accepted: 12/04/2022] [Indexed: 12/13/2022]
Abstract
Catalyst-free fully bio-based hydroxyester (BHE) vitrimers were synthesized by crosslinking and plasticizing epoxidized soybean oil with synthesized acetylated starch succinate monoesters to investigate the effects of different starch structures on the properties of the BHE vitrimers. The BHE vitrimers possessed a lower glass transition temperature as well as better solvent resistance and reprocessing performance compared to traditional starch-based materials. Owing to dynamically covalent bonds, the migration and exudation of plasticizers were avoided. A maximum strain of 230 % was achieved to prevent the retrogradation and brittleness of starch-based materials. Furthermore, the mechanical properties remained unchanged after three reprocessing cycles. Consequently, the obtained BHE vitrimers are eco-friendly and sustainable.
Collapse
Affiliation(s)
- Chang Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China.
| | - Benzhi Ju
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China.
| | - Shufen Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
3
|
Development of natural rubber with enhanced oxidative degradability. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04240-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|