1
|
Spiering GA, Godshall GF, Moore RB. High Modulus, Strut-like poly(ether ether ketone) Aerogels Produced from a Benign Solvent. Gels 2024; 10:283. [PMID: 38667702 PMCID: PMC11049303 DOI: 10.3390/gels10040283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Poly(ether ether ketone) (PEEK) was found to form gels in the benign solvent 1,3-diphenylacetone (DPA). Gelation of PEEK in DPA was found to form an interconnected, strut-like morphology composed of polymer axialites. To our knowledge, this is the first report of a strut-like morphology for PEEK aerogels. PEEK/DPA gels were prepared by first dissolving PEEK in DPA at 320 °C. Upon cooling to 50 °C, PEEK crystallizes and forms a gel in DPA. The PEEK/DPA phase diagram indicated that phase separation occurs by solid-liquid phase separation, implying that DPA is a good solvent for PEEK. The Flory-Huggins interaction parameter, calculated as χ12 = 0.093 for the PEEK/DPA system, confirmed that DPA is a good solvent for PEEK. PEEK aerogels were prepared by solvent exchanging DPA to water then freeze-drying. PEEK aerogels were found to have densities between 0.09 and 0.25 g/cm3, porosities between 80 and 93%, and surface areas between 200 and 225 m2/g, depending on the initial gel concentration. Using nitrogen adsorption analyses, PEEK aerogels were found to be mesoporous adsorbents, with mesopore sizes of about 8 nm, which formed between stacks of platelike crystalline lamellae. Scanning electron microscopy and X-ray scattering were utilized to elucidate the hierarchical structure of the PEEK aerogels. Morphological analysis found that the PEEK/DPA gels were composed of a highly nucleated network of PEEK axialites (i.e., aggregates of stacked crystalline lamellae). The highly connected axialite network imparted robust mechanical properties on PEEK aerogels, which were found to densify less upon freeze-drying than globular PEEK aerogel counterparts gelled from dichloroacetic acid (DCA) or 4-chlorphenol (4CP). PEEK aerogels formed from DPA were also found to have a modulus-density scaling that was far more efficient in supporting loads than the poorly connected aerogels formed from PEEK/DCA or PEEK/4CP solutions. The strut-like morphology in these new PEEK aerogels also significantly improved the modulus to a degree that is comparable to high-performance crosslinked aerogels based on polyimide and polyurea of comparable densities.
Collapse
Affiliation(s)
| | | | - Robert B. Moore
- Department of Chemistry, Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, USA; (G.A.S.); (G.F.G.)
| |
Collapse
|
2
|
He J, Liu J, Gou H, Zhen X, Li S, Kang Y, Li A. Cost-Effective and Scalable Solar Interface Evaporators Derived from Industry Waste for Efficient Solar Steam Generation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:5545-5555. [PMID: 38428024 DOI: 10.1021/acs.langmuir.4c00237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Interfacial solar steam generation for sustainable and eco-friendly desalination and wastewater treatment has attracted much attention. However, costly raw materials and complex preparation processes pose constant challenges to its wide promotion. Herein, a novel, cost-effective, and scalable strategy is presented for preparing solar interface evaporators using industrial waste as a raw material. Modified polyethylene foam evaporators (M-EPEs) are simply prepared by drilling and then hydrophilic modification of industrial waste (EPE-1). M-EPEs not only retain the strong mechanical properties and thermal insulating properties (0.047 W·m-1·K-1) of EPE-1 but also exhibit superhydrophilicity and strong light absorption (over 90%). M-EPEs achieve a high evaporation rate of 1.497 kg·m-2·h-1 and photothermal efficiency of up to 93.8% under 1 kW·m-2 solar illumination. Moreover, it has excellent stability and salt tolerance. Our work addresses the environmental issues of recycling polyethylene waste and provides a facile and efficient strategy for designing low-cost, large-scale solar interface evaporators for desalination.
Collapse
Affiliation(s)
- Jingxian He
- School of New Energy and Power Engineering, Lanzhou Jiao Tong University, Lanzhou 730070, People's Republic of China
| | - Jianxia Liu
- School of New Energy and Power Engineering, Lanzhou Jiao Tong University, Lanzhou 730070, People's Republic of China
| | - Hao Gou
- School of Chemistry and Chemical Engineering, Lanzhou City University, Lanzhou 730070, People's Republic of China
| | - Xiaofei Zhen
- School of New Energy and Power Engineering, Lanzhou Jiao Tong University, Lanzhou 730070, People's Republic of China
| | - Shuaibing Li
- School of New Energy and Power Engineering, Lanzhou Jiao Tong University, Lanzhou 730070, People's Republic of China
| | - Yongqiang Kang
- School of New Energy and Power Engineering, Lanzhou Jiao Tong University, Lanzhou 730070, People's Republic of China
| | - An Li
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730070, People's Republic of China
| |
Collapse
|
3
|
Pochivalov K, Basko A, Lebedeva T, Yurov M, Yushkin A, Volkov A, Bronnikov S. Controlled Swelling of Monolithic Films as a Facile Approach to the Synthesis of UHMWPE Membranes. MEMBRANES 2023; 13:422. [PMID: 37103849 PMCID: PMC10145273 DOI: 10.3390/membranes13040422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 06/19/2023]
Abstract
A new method of fabricating porous membranes based on ultra-high molecular weight polyethylene (UHMWPE) by controlled swelling of the dense film was proposed and successfully utilized. The principle of this method is based on the swelling of non-porous UHMWPE film in organic solvent at elevated temperatures, followed by its cooling and further extraction of organic solvent, resulting in the formation of the porous membrane. In this work, we used commercial UHMWPE film (thickness 155 μm) and o-xylene as a solvent. Either homogeneous mixtures of the polymer melt and solvent or thermoreversible gels with crystallites acting as crosslinks of the inter-macromolecular network (swollen semicrystalline polymer) can be obtained at different soaking times. It was shown that the porous structure and filtration performance of the membranes depended on the swelling degree of the polymer, which can be controlled by the time of polymer soaking in organic solvent at elevated temperature (106 °C was found to be the optimal temperature for UHMWPE). In the case of homogeneous mixtures, the resulting membranes possessed both large and small pores. They were characterized by quite high porosity (45-65% vol.), liquid permeance of 46-134 L m-2 h-1 bar-1, a mean flow pore size of 30-75 nm, and a very high crystallinity degree of 86-89% at a decent tensile strength of 3-9 MPa. For these membranes, rejection of blue dextran dye with a molecular weight of 70 kg/mol was 22-76%. In the case of thermoreversible gels, the resulting membranes had only small pores located in the interlamellar spaces. They were characterized by a lower crystallinity degree of 70-74%, a moderate porosity of 12-28%, liquid permeability of up to 12-26 L m-2 h-1 bar-1, a mean flow pore size of up to 12-17 nm, and a higher tensile strength of 11-20 MPa. These membranes demonstrated blue dextran retention of nearly 100%.
Collapse
Affiliation(s)
- Konstantin Pochivalov
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 ul. Akademicheskaya, 153045 Ivanovo, Russia; (A.B.)
| | - Andrey Basko
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 ul. Akademicheskaya, 153045 Ivanovo, Russia; (A.B.)
| | - Tatyana Lebedeva
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 ul. Akademicheskaya, 153045 Ivanovo, Russia; (A.B.)
| | - Mikhail Yurov
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 ul. Akademicheskaya, 153045 Ivanovo, Russia; (A.B.)
| | - Alexey Yushkin
- A.V. Topchiev Institute of Petrochemical Synthesis of the Russian Academy of Sciences, 29 Leninsky Prospect, 119991 Moscow, Russia
| | - Alexey Volkov
- A.V. Topchiev Institute of Petrochemical Synthesis of the Russian Academy of Sciences, 29 Leninsky Prospect, 119991 Moscow, Russia
- Biological and Environmental Science, and Engineering Division (BESE), Advanced Membranes and Porous Materials Center (AMPM), King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Sergei Bronnikov
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, 31 Bolshoy pr., 199004 St. Petersburg, Russia
| |
Collapse
|
4
|
Recent Progress of Non-Isocyanate Polyurethane Foam and Their Challenges. Polymers (Basel) 2023; 15:polym15020254. [PMID: 36679134 PMCID: PMC9866265 DOI: 10.3390/polym15020254] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
Polyurethane foams (PUFs) are a significant group of polymeric foam materials. Thanks to their outstanding mechanical, chemical, and physical properties, they are implemented successfully in a wide range of applications. Conventionally, PUFs are obtained in polyaddition reactions between polyols, diisoycyanate, and water to get a CO2 foaming agent. The toxicity of isocyanate has attracted considerable attention from both scientists and industry professionals to explore cleaner synthesis routes for polyurethanes excluding the use of isocyanate. The polyaddition of cyclic carbonates (CCs) and polyfunctional amines in the presence of an external blowing agent or by self-blowing appears to be the most promising route to substitute the conventional PUFs process and to produce isocyanate-free polyurethane foams (NIPUFs). Especially for polyhydroxyurethane foams (PHUFs), the use of a blowing agent is essential to regenerate the gas responsible for the creation of the cells that are the basis of the foam. In this review, we report on the use of different blowing agents, such as Poly(methylhydrogensiloxane) (PHMS) and liquid fluorohydrocarbons for the preparation of NIPUFs. Furthermore, the preparation of NIPUFs using the self-blowing technique to produce gas without external blowing agents is assessed. Finally, various biologically derived NIPUFs are presented, including self-blown NIPUFs and NIPUFs with an external blowing agent.
Collapse
|
5
|
Production and Application of Polymer Foams Employing Supercritical Carbon Dioxide. ADVANCES IN POLYMER TECHNOLOGY 2022. [DOI: 10.1155/2022/8905115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Polymeric foams have characteristics that make them attractive for different applications. However, some foaming methods rely on chemicals that are not environmentally friendly. One of the possibilities to tackle the environmental issue is to utilize supercritical carbon dioxide ScCO2 since it is a “green” solvent, thus facilitating a sustainable method of producing foams. ScCO2 is nontoxic, chemically inert, and soluble in molten plastic. It can act as a plasticizer, decreasing the viscosity of polymers according to temperature and pressure. Most foam processes can benefit from ScCO2 since the methods rely on nucleation, growth, and expansion mechanisms. Process considerations such as pretreatment, temperature, pressure, pressure drop, and diffusion time are relevant parameters for foaming. Other variables such as additives, fillers, and chain extenders also play a role in the foaming process. This review highlights the morphology, performance, and features of the foam produced with ScCO2, considering relevant aspects of replacing or introducing a novel foam. Recent findings related to foaming assisted by ScCO2 and how processing parameters influence the foam product are addressed. In addition, we discuss possible applications where foams have significant benefits. This review shows the recent progress and possibilities of ScCO2 in processing polymer foams.
Collapse
|
6
|
Large-Scale Preparation of Uniform Millet Bread-like Durable Benzoxazine-Phthalonitrile Foam with Outstanding Mechanical and Thermal Properties. Polymers (Basel) 2022; 14:polym14245410. [PMID: 36559777 PMCID: PMC9781014 DOI: 10.3390/polym14245410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/30/2022] [Accepted: 12/03/2022] [Indexed: 12/14/2022] Open
Abstract
It is essentially important to develop durable polymer foams for services in high-temperature conditions. The current study reported the preparations and properties of a high-performance benzoxazine-phthalonitrile (BZPN) foam by utilizing azodicarbonamide and tween-80 as the blowing agent and stabilizer, respectively. Rheological and curing studies indicated that the appropriate foaming temperature for BZPN foam is below 180 °C, and its foaming viscosity window is below 20 Pa·s. Guided by these results, uniform millet bread-like BZPN foams with decimeter leveling size were successfully realized, suggesting the high prospect of large-scale production. The structural, mechanical, and thermal properties of BZPN foams were then investigated in detail. BZPN foam involves a hierarchical fracture mechanism during the compressive test, and it shows a high compression strength of over 6 MPa. During a burning test over 380 °C, no visible smoke, softening, or droplet phenomena appeared and the macroscopic structure of BZPN foam was well maintained. Mechanically robust, flame-retardant, and uniform large-size BZPN foam are promising light durable materials with high service temperatures, i.e., as filling materials even in a very narrow pipette.
Collapse
|
7
|
Basko A, Pochivalov K. Current State-of-the-Art in Membrane Formation from Ultra-High Molecular Weight Polyethylene. MEMBRANES 2022; 12:membranes12111137. [PMID: 36422129 PMCID: PMC9696610 DOI: 10.3390/membranes12111137] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 05/12/2023]
Abstract
One of the materials that attracts attention as a potential material for membrane formation is ultrahigh molecular weight polyethylene (UHMWPE). One potential material for membrane formation is ultrahigh molecular weight polyethylene (UHMWPE). The present review summarizes the results of studies carried out over the last 30 years in the field of preparation, modification and structure and property control of membranes made from ultrahigh molecular weight polyethylene. The review also presents a classification of the methods of membrane formation from this polymer and analyzes the conventional (based on the analysis of incomplete phase diagrams) and alternative (based on the analysis of phase diagrams supplemented by a boundary line reflecting the polymer swelling degree dependence on temperature) physicochemical concepts of the thermally induced phase separation (TIPS) method used to prepare UHMWPE membranes. It also considers the main ways to control the structure and properties of UHMWPE membranes obtained by TIPS and the original variations of this method. This review discusses the current challenges in UHMWPE membrane formation, such as the preparation of a homogeneous solution and membrane shrinkage. Finally, the article speculates about the modification and application of UHMWPE membranes and further development prospects. Thus, this paper summarizes the achievements in all aspects of UHMWPE membrane studies.
Collapse
|
8
|
Superhydrophobic polycarbonate blend monolith with micro/nano porous structure for selective oil/water separation. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124994] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
9
|
Quan J, Yu J, Wang Y, Hu Z. Oriented shish-kebab like ultra-high molecular weight polyethylene membrane for direct contact membrane distillation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
10
|
Wang X, Zhang M, Schubert DW, Liu X. Oil-Water Separation Polypropylene Foam with Advanced Solvent-Evaporation Induced Coexistence of Microspheres and Microporous Structure. Macromol Rapid Commun 2022; 43:e2200177. [PMID: 35355354 DOI: 10.1002/marc.202200177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/23/2022] [Indexed: 11/09/2022]
Abstract
For decades, crude oil spills and oil wastewater have become the most problematic environmental pollution and damage to public health. Therefore, it is considerable to develop superhydrophobic polymer foam for separating oil from water with high selectivity and sorption capacity. Here, a new type of environmentally friendly pure polypropylene (PP) foam with superhydrophobicity is first time proposed with a particular coexistence of microspheres and microporous structure fabricated via an advanced solvent-evaporation method. The PP foam exhibits exceptional superhydrophobic with a water contact angle of 151° and the maximum saturated adsorption capacity of 26 g/g. After more than 15 h of cyclic continuous oil-water pumping experiment, it still maintains a high oil absorption efficiency of 98%, providing the basis for practical commercial applications. More importantly, the variation of hydrophobic properties is described by Flory-Huggins polymer solution theory and Huggins interaction parameters, and the optimal solution ratio range is predicted which providing a relevant theoretical basis for actual industrial production. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xin Wang
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Material Processing and Mold of Ministry of Education, Zhengzhou University, Wenhua Road 97-1, Zhengzhou, 450002, P. R. China.,Institute of Polymer Materials, Friedrich-Alexander-University Erlangen-Nuremberg, Martensstr. 7, Erlangen, 91058, Germany
| | - Mingtao Zhang
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Material Processing and Mold of Ministry of Education, Zhengzhou University, Wenhua Road 97-1, Zhengzhou, 450002, P. R. China
| | - Dirk W Schubert
- Institute of Polymer Materials, Friedrich-Alexander-University Erlangen-Nuremberg, Martensstr. 7, Erlangen, 91058, Germany.,Bavarian Polymer Institute, Dr. Mack-Strasse 77, Fürth, 90762, Germany
| | - Xianhu Liu
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Material Processing and Mold of Ministry of Education, Zhengzhou University, Wenhua Road 97-1, Zhengzhou, 450002, P. R. China
| |
Collapse
|
11
|
Zhou L, Su C, Chen B, Zhao Q, Wang X, Zhao X, Ju G. Durable ER@SiO2@PDMS superhydrophobic composite designed by double crosslinking strategy for efficient oil-water separation. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
12
|
Chen XY, Nagamine S, Ohshima M, Rodrigue D. High‐performance thermal insulator based on polymer foam and silica xerogel. POLYM ENG SCI 2022. [DOI: 10.1002/pen.25871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xiao Yuan Chen
- Department of Chemical Engineering Kyoto University Kyoto Japan
- Department of Chemical Engineering Université Laval Quebec City Quebec Canada
| | | | | | - Denis Rodrigue
- Department of Chemical Engineering Université Laval Quebec City Quebec Canada
| |
Collapse
|
13
|
Song S, Shi Y, Tan J, Wu Z, Zhang M, Qiang S, Nie J, Liu H. An efficient approach to fabricate lightweight polyimide/aramid sponge with excellent heat insulation and sound absorption performance. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.02.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Zhang L, Narita C, Himeda Y, Honma H, Yamada K. Development of highly oil-absorbent polylactic-acid microfibers with a nanoporous structure via simple one-step centrifugal spinning. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
15
|
Pang Y, Yu Z, Chen L, Chen H. Superhydrophobic polyurethane sponges modified by sepiolite for efficient oil-water separation. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
Yao M, Zhang P, Nie J, He Y. The Superhydrophobic Fluorine‐Containing Material Prepared Through Biomimetic UV Lithography for Oil–Water Separation and Anti‐Bioadhesion. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100149] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Miao Yao
- College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 P. R. China
- Changzhou Institute of Advanced Materials Beijing University of Chemical Technology Changzhou 213164 P. R. China
| | - Pingping Zhang
- College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 P. R. China
- Changzhou Institute of Advanced Materials Beijing University of Chemical Technology Changzhou 213164 P. R. China
| | - Jun Nie
- College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 P. R. China
- Changzhou Institute of Advanced Materials Beijing University of Chemical Technology Changzhou 213164 P. R. China
| | - Yong He
- College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 P. R. China
- Changzhou Institute of Advanced Materials Beijing University of Chemical Technology Changzhou 213164 P. R. China
| |
Collapse
|
17
|
Li E, Pan Y, Wang C, Liu C, Shen C, Pan C, Liu X. Asymmetric Superhydrophobic Textiles for Electromagnetic Interference Shielding, Photothermal Conversion, and Solar Water Evaporation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:28996-29007. [PMID: 34101415 DOI: 10.1021/acsami.1c07976] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Flexible and multifunctional textiles have potential applications in self-cleaning and portable electronic product applications, but the current problem that needs to be solved is to maintain their inherent breathability and flexibility while expanding other functional applications. Herein, we adopt the layer-by-layer assembly method to develop a multifunctional textile with superior asymmetric superhydrophobicity, excellent electromagnetic interference (EMI) shielding, outstanding photothermal conversion, and solar water evaporation. The synergistic effect of SiO2 nanoparticles/poly(dimethylsiloxane) (PDMS) and 1H,1H,2H,2H-perfluorooctyltriethoxysilane (PFOTES) endows the textile with a water contact angle of 160°. MXene provides high conductivity (1200 S/m) and EMI shielding effects (36 dB) for multifunctional textiles. In addition, the multifunctional textile exhibits excellent photothermal conversion, and satisfactory solar water evaporation efficiency (80%) and rate (1.22 kg/(m2 h)) under 1 sun. Therefore, the prepared multifunctional textile has great potential in multiscene applications.
Collapse
Affiliation(s)
- En Li
- College of Materials Science and Engineering, National Engineering Research Center for Advanced Polymer Processing Technology, Henan Province Industrial Technology Research Institute of Resources and Materials, Key Laboratory of Advanced Material Processing & Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China
| | - Yamin Pan
- College of Materials Science and Engineering, National Engineering Research Center for Advanced Polymer Processing Technology, Henan Province Industrial Technology Research Institute of Resources and Materials, Key Laboratory of Advanced Material Processing & Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China
| | - Chunfeng Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, National Center for Nanoscience and Technology (NCNST), Beijing 100083, China
| | - Chuntai Liu
- College of Materials Science and Engineering, National Engineering Research Center for Advanced Polymer Processing Technology, Henan Province Industrial Technology Research Institute of Resources and Materials, Key Laboratory of Advanced Material Processing & Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China
| | - Changyu Shen
- College of Materials Science and Engineering, National Engineering Research Center for Advanced Polymer Processing Technology, Henan Province Industrial Technology Research Institute of Resources and Materials, Key Laboratory of Advanced Material Processing & Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China
| | - Caofeng Pan
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, National Center for Nanoscience and Technology (NCNST), Beijing 100083, China
| | - Xianhu Liu
- College of Materials Science and Engineering, National Engineering Research Center for Advanced Polymer Processing Technology, Henan Province Industrial Technology Research Institute of Resources and Materials, Key Laboratory of Advanced Material Processing & Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China
| |
Collapse
|