1
|
Taheri-Ledari R, Zarei-Shokat S, Qazi FS, Ghafori-Gorab M, Ganjali F, Kashtiaray A, Mahdavi M, Safavi M, Maleki A. A Mesoporous Magnetic Fe 3O 4/BioMOF-13 with a Core/Shell Nanostructure for Targeted Delivery of Doxorubicin to Breast Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2025; 17:17703-17717. [PMID: 38147586 DOI: 10.1021/acsami.3c14363] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
In the current project, magnetic Bio-MOF-13 was used as an efficient carrier for the targeted delivery and controlled release of doxorubicin (DOX) to MDA-MB-231 cells. Magnetic Bio-MOF-13 was prepared by two strategies and compared to determine the optimal state of the structure. In the first path, Bio-MOF-13 was grown in situ on the surface of Fe3O4 nanoparticles (core/shell structure), while in the second method, the two presynthesized materials were mixed together (surface composite). Core/shell structure, among prepared nanocomposites, was chosen for biological evaluation due to its favorable structural features like a high accessible surface area and pore volume. Also, it is highly advantageous for drug release due to its ability to selectively release DOX in the acidic pH of breast cancer cells, while preventing any premature release in the neutral pH of the blood. Drug release from the carrier structure is precisely controlled not only by pH but also by an external magnetic field, guaranteeing accurate drug delivery at the intended location. Confocal microscopy and flow cytometry assay clearly confirms the increase in drug concentration in the MDA-MB-231 cell line after external magnet applying. This point, along with the low toxicity of the carrier components, makes it a suitable candidate for injectable medicine. According to MTT results, the percentage of viable MDA-MB-231 cells after treatment with 10 μL of DOX@Fe3O4/Bio-MOF-13 core/shell composite in different concentrations, in the presence and absence of magnetic field is 0.87 ± 0.25 and 2.07 ± 0.15, respectively. As a result, the DOX@Fe3O4/Bio-MOF-13 core/shell composite was performed and approved for targeted drug delivery and magnetic field-assisted controlled release of DOX to the MDA-MB-231 cell line.
Collapse
Affiliation(s)
- Reza Taheri-Ledari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Simindokht Zarei-Shokat
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Fateme Sadat Qazi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Mostafa Ghafori-Gorab
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Fatemeh Ganjali
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Amir Kashtiaray
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran 14166-34793, Iran
| | - Maliheh Safavi
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), P.O. Box 3353-5111, Tehran 33531-36846,, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| |
Collapse
|
2
|
Livi S, Baudoux J, Gérard JF, Duchet-Rumeau J. Ionic Liquids: A Versatile Platform for the Design of a Multifunctional Epoxy Networks 2.0 Generation. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101581] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
3
|
Chabane H, Livi S, Duchet-Rumeau J, Gérard JF. New Epoxy Thermosets Organic-Inorganic Hybrid Nanomaterials Derived from Imidazolium Ionic Liquid Monomers and POSS ®Ph. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:550. [PMID: 35159895 PMCID: PMC8837961 DOI: 10.3390/nano12030550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 11/30/2022]
Abstract
New epoxy-amine networks issue from epoxydized imidazolium ionic liquid monomers (ILMs) and isophorone diamine (IPD) were modified for the first time by incorporating unmodified trisilanol phenyl POSS® (POSS®Ph-triol) and two ionic liquid-modified POSS®Ph (IL-g-POSS®Ph) having chloride (Cl-) and bis-trifluoromethanesulfonimidate (NTf2-) counter anions. Then, 5 wt.% of unmodified and IL-modified POSS®Ph were introduced in order to develop new solid electrolytes. First, a homogeneous dispersion of the POSS®Ph aggregates (diameters from 80 to 400 nm) into epoxy networks was observed. As a consequence, ILM/IPD networks with glass transition temperatures between 45 and 71 °C combined with an enhancement of the thermal stability (>380 °C) were prepared. Moreover, a significant increase of the hydrophobic character and high oil repellency of the network surfaces were obtained by using IL-g-POSS®Ph (19-20 mJ.m-2), opening up promising prospects for surface coating applications. Finally, these new epoxy networks exhibited outstanding high ionic conductivities (from 3.4 × 10-8 to 6.8 × 10-2 S.m-1) combined with an increase in permitivity.
Collapse
Affiliation(s)
- Houssém Chabane
- Univ Lyon, CNRS, UMR 5223, Ingénierie des Matériaux Polymères, Université Claude Bernard Lyon 1, INSA Lyon, Université Jean Monnet, F-69621 Villeurbanne, France; (H.C.); (S.L.); (J.D.-R.)
- Laboratoire de Chimie Macromoléculaire, Ecole Militaire Polytechnique, BP 17, Bordj El-Bahri, 16111 Algiers, Algeria
| | - Sébastien Livi
- Univ Lyon, CNRS, UMR 5223, Ingénierie des Matériaux Polymères, Université Claude Bernard Lyon 1, INSA Lyon, Université Jean Monnet, F-69621 Villeurbanne, France; (H.C.); (S.L.); (J.D.-R.)
| | - Jannick Duchet-Rumeau
- Univ Lyon, CNRS, UMR 5223, Ingénierie des Matériaux Polymères, Université Claude Bernard Lyon 1, INSA Lyon, Université Jean Monnet, F-69621 Villeurbanne, France; (H.C.); (S.L.); (J.D.-R.)
| | - Jean-François Gérard
- Univ Lyon, CNRS, UMR 5223, Ingénierie des Matériaux Polymères, Université Claude Bernard Lyon 1, INSA Lyon, Université Jean Monnet, F-69621 Villeurbanne, France; (H.C.); (S.L.); (J.D.-R.)
| |
Collapse
|
4
|
Shi T, Livi S, Duchet-Rumeau J, Gérard JF. Enhanced mechanical and thermal properties of ionic liquid core/silica shell microcapsules-filled epoxy microcomposites. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|