1
|
Luo Q, Ding CJ, Zhong CZ, Wang L, Wang NL, Li WD, Tang ZH, Xu S. Urchin-like NiCo-based bimetallic hydroxide decorated with DOPO as highly hydrophobic flame retardant for remarkably reducing fire hazard of poly (L-lactic acid). Int J Biol Macromol 2024; 280:136028. [PMID: 39332573 DOI: 10.1016/j.ijbiomac.2024.136028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/23/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
Designing high-performance flame retardants for poly (L-lactic acid) (PLA) materials and exploring a simple and scalable strategy have been hot topics in research. In this work, a novel and highly efficient flame retardant, that is, 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) decorated urchin-like NiCo-based bimetallic hydroxide (NiCo-BH@DOPO), was synthesized and incorporated into PLA to prepare PLA and NiCo-BH@DOPO (PLA/NiCo-BH@DOPO) composite. Benefiting from the DOPO organic modification, NiCo-BH@DOPO had superb hydrophobicity and presented excellent dispersion in the PLA matrix. When 20 wt% NiCo-BH@DOPO was added, the LOI value of PLA/NiCo-BH@DOPO composites reached 33.2 %, passed the V-0 level of UL-94 grade, and its maximum peak heat release rate (PHRR) and total heat release (THR) were reduced by 13.2 % and 17.3 %, respectively, compared with PLA/NiCo-BH composites. Furthermore, the residue of PLA/NiCo-BH@DOPO at 800 °C reached 19.8 wt% and the T10% (temperature at 10 % weight loss) increased by 33 °C. More importantly, the residual PLA/NiCo-BH@DOPO char exhibits a significantly reduced presence of large cracks compared to PLA/NiCo-BH, indicating a more compact formation of residual char. NiCo-BH@DOPO endowed PLA with outstanding flame retardancy, thermal stability and carbonization properties, which were owing to the multi-coordinating effect transition metal (NiCo-BH) catalyzed the char formation to form a char layer barrier and DOPO free radicals captured to inhibit the combustion reaction chain. This investigation provided a facile strategy for the novel multi-function NiCo-based bimetallic hydroxide flame retardant, expanding NiCo-BH potential applications in PLA.
Collapse
Affiliation(s)
- Qian Luo
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, Hunan, China
| | - Chi-Jie Ding
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, Hunan, China
| | - Cheng-Zhi Zhong
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, Hunan, China
| | - Lei Wang
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, Hunan, China
| | - Niang-Liang Wang
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, Hunan, China.
| | - Wei-Du Li
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, Hunan, China
| | - Zhe-Hong Tang
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, Hunan, China
| | - Sheng Xu
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, Hunan, China.
| |
Collapse
|
2
|
Yang XM, Qiu S, Yusuf A, Sun J, Zhai Z, Zhao J, Yin GZ. Recent advances in flame retardant and mechanical properties of polylactic acid: A review. Int J Biol Macromol 2023:125050. [PMID: 37257540 DOI: 10.1016/j.ijbiomac.2023.125050] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 05/08/2023] [Accepted: 05/18/2023] [Indexed: 06/02/2023]
Abstract
The large-scale application of ecofriendly polymeric materials has become a key focus of scientific research with the trend toward sustainable development. Mechanical properties and fire safety are two critical considerations of biopolymers for large-scale applications. Polylactic acid (PLA) is a flammable, melt-drop carrying, and strong but brittle polymer. Hence, it is essential to achieve both flame retardancy and mechanical enhancement to improve safety and broaden its application. This study reviews the recent research on the flame retardant functionalization and mechanical reinforcement of PLA. It classifies PLA according to the type of the flame retardant strategy employed, such as surface-modified fibers, modified nano/micro fillers, small-molecule and macromolecular flame retardants, flame retardants with fibers or polymers, and chain extension or crosslinking with other flame retardants. The functionalization strategies and main parameters of the modified PLA systems are summarized and analyzed. This study summarizes the latest advances in the fields of flame retardancy and mechanical reinforcement of PLA.
Collapse
Affiliation(s)
- Xiao-Mei Yang
- Zhejiang Ruico Advanced Material Co., Ltd., Huzhou 313018, Zhejiang Province, China
| | - Shuang Qiu
- Beijing University of Chemical Technology, 100029 Beijing, China
| | - Abdulmalik Yusuf
- E.T.S. de Ingenieros de Caminos, Universidad Politécnica de Madrid, C/Profesor Aranguren 3, 28040 Madrid, Spain
| | - Jun Sun
- Beijing University of Chemical Technology, 100029 Beijing, China.
| | - Zhongjie Zhai
- Zhejiang Ruico Advanced Material Co., Ltd., Huzhou 313018, Zhejiang Province, China
| | - Junhuan Zhao
- Zhejiang Ruico Advanced Material Co., Ltd., Huzhou 313018, Zhejiang Province, China.
| | - Guang-Zhong Yin
- Escuela Politécnica Superior, Universidad Francisco de Vitoria, Ctra. Pozuelo-Majadahonda Km 1.800, 28223 Pozuelo de Alarcón, Madrid, Spain.
| |
Collapse
|
3
|
Wang Z, Zhang K, Wang H, Wu X, Wang H, Weng C, Li Y, Liu S, Yang J. Strengthening Interfacial Adhesion and Foamability of Immiscible Polymer Blends via Rationally Designed Reactive Macromolecular Compatibilizers. ACS APPLIED MATERIALS & INTERFACES 2022; 14:45832-45843. [PMID: 36169636 DOI: 10.1021/acsami.2c12383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Foams made of immiscible polymer blends have attracted great interest in both academia and industry, because of the integration of desirable properties of different polymers in a hybrid foam. However, the foamability and end-use properties are hampered because of the poor interfacial strength within the immiscible blends. Furthermore, few investigations have been carried out on the mechanisms by which interfacial strength and structure affect the foamability of polymer blends. In this work, two different reactive interfacial compatibilizers, i.e., poly(styrene-co-glycidyl methacrylate)-graft-poly(l-lactide) and poly(styrene-co-glycidyl methacry-late)-graft-poly(d-lactide), abbreviated as SG-g-PLLA and SG-g-PDLA, respectively, were designed and synthesized through reactive melt blending and subsequently applied to strengthen the interfacial strength and foamability of immiscible poly(butylene adipate-co-terephthalate) (PBAT)/poly(l-lactide) (PLLA) blends. Both compatibilizers could remarkably enhance the interfacial strength and foamability of the PBAT/PLLA blends, as evidenced by the significantly elongated dispersed phase in the resulting cocontinuous phase and more than 7000-fold increase in the cell density. Furthermore, the improved foamability was quantitively explained by the reduced gas diffusion and increased melt strength. Strikingly, the SG-g-PDLA introduced a stereocomplex crystal at the interface (i-SC), providing highly strengthened interfaces and nanoscale heterogeneous nucleation sites, which led to an energetically favorable cell nucleation. Moreover, foams with specifically laminated cell structures were fabricated by combining pressure-induced flow processing and i-SC strengthened interfaces. This work provides insight into the relationship between interfacial strength and formability of immiscible polymer blends and offers new possibilities for controlling cell morphologies and designing unique cell structures for polymer foams.
Collapse
Affiliation(s)
- Zhen Wang
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, P. R. China
| | - Kailiang Zhang
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, P. R. China
| | - Hengti Wang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Xinyu Wu
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, P. R. China
| | - Hanyu Wang
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, P. R. China
| | - Chenglong Weng
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, P. R. China
| | - Yongjin Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Shanqiu Liu
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, P. R. China
| | - Jintao Yang
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, P. R. China
| |
Collapse
|
4
|
Wang H, Rong C, You J, Li Y. Enhancement of strength and toughness of bio-nanocomposites with good transparency and heat resistance by reactive processing. iScience 2022; 25:104560. [PMID: 35769885 PMCID: PMC9234255 DOI: 10.1016/j.isci.2022.104560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/10/2022] [Accepted: 06/02/2022] [Indexed: 11/18/2022] Open
Abstract
Growing concerns in addressing environmental challenges are driving the rapid advancement of both bio-based and environmental friendly materials. Biodegradable polymers have been compounded with various nanofillers to fulfill the multiple requirements in real applications. However, current technologies remain to be improved in terms of the intrinsic inferior performance and the lack of interfacial interactions. In this work, we employed a facile route to develop bio-nanocomposites integrating multiple functionalities by reactive processing of polylactide and reactive boehmite nanorods. The grafting of polymer chains onto the surface of the nanorods encourages fully homogeneous dispersion of nanofillers with even 30 wt% loadings. Such nanocomposites exhibit simultaneously enhanced tensile strength, modulus, ductility, and impact strength. Moreover, the bio-based nanocomposites present promising features such as high transparency, improved flame resistance, and heat resistance. This work demonstrates exciting opportunities to produce bio-plastics with diverse functionalities in versatile applications of sustainable packaging industry and engineering plastics.
Collapse
Affiliation(s)
- Hengti Wang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang 311121, People’s Republic of China
| | - Chenyan Rong
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang 311121, People’s Republic of China
| | - Jichun You
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang 311121, People’s Republic of China
| | - Yongjin Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang 311121, People’s Republic of China
- Corresponding author
| |
Collapse
|
5
|
Tetradentate copper complex supported on boehmite nanoparticles as an efficient and heterogeneous reusable nanocatalyst for the synthesis of diaryl ethers. Sci Rep 2022; 12:11660. [PMID: 35804003 PMCID: PMC9270415 DOI: 10.1038/s41598-022-15921-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 07/01/2022] [Indexed: 12/29/2022] Open
Abstract
In this work boehmite nanoparticles (BNPs) were prepared through addition of aqueous solution of NaOH to solution of Al(NO3)3·9H2O. Then, the surface of BNPs was modified by (3-chloropropyl)trimethoxysilane (CPTMS) and further tetradentate ligand (MP-bis(AMP)) was anchored on its surface. At final step, a tetradentate organometallic complex of copper was stabilized on the surface of modified BNPs (Cu(II)-MP-bis(AMP)@boehmite). These obtained nanoparticles were characterized using SEM imaging, WDX, EDS, AAS and TGA analysis, BET method, FT-IR spectroscopy, and XRD pattern. In continue, the catalytic activity of Cu(II)-MP-bis(AMP)@boehmite has been used as a much efficient, reusable and hybrid of organic-inorganic nanocatalyst in the synthesis of ether derivatives through C-O coupling reaction under palladium-free and phosphine-free conditions. Cu(II)-MP-bis(AMP)@boehmite catalyst has been recovered and reused again for several times in the synthesis of ether derivatives.
Collapse
|
6
|
Qu Y, Rong C, Ling X, Wu J, Chen Y, Wang H, Li Y. Role of Interfacial Postreaction during Thermal Treatment: Toward a Better Understanding of the Toughness of PLLA/Reactive Elastomer Blends. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02273] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yingding Qu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People’s Republic of China
| | - Chenyan Rong
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People’s Republic of China
| | - Xiayan Ling
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People’s Republic of China
| | - Jiali Wu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People’s Republic of China
| | - Yihang Chen
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People’s Republic of China
| | - Hengti Wang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People’s Republic of China
| | - Yongjin Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People’s Republic of China
| |
Collapse
|