1
|
Guo F, Hao L, Feng L, Hu B, Niu J, Zhang X, Chen S, Liu B. A review of electrospun metal oxide semiconductor-based photocatalysts. iScience 2025; 28:111675. [PMID: 39868036 PMCID: PMC11761326 DOI: 10.1016/j.isci.2024.111675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025] Open
Abstract
In recent years, photocatalytic materials with a nanofiber-like morphology have garnered a surge of academic attention due to their distinctive properties, including an expansive specific surface area, a considerable high aspect ratio, a pronounced resistance to agglomeration, superior electron survivability, and robust surface activity. Consequently, the synthesis of photocatalytic nanofiber materials through various methodologies has drawn considerable attention. The electrospinning technique has been established as a prevalent method for fabricating nanofiber-structured materials, owing to its advantageous properties, including the ability for mass production and the assurance of high continuity. This review focuses on metal oxide semiconductor-based materials, which are crucial components of photocatalysts. We summarize several recent studies that explore morphology modulation, surface modification, element doping, and composite construction using uniaxial and coaxial electrospinning techniques. Finally, we present potential approaches for constructing high-activity photocatalytic systems through electrospinning technique.
Collapse
Affiliation(s)
- Fushui Guo
- Analysis and Testing Center, Shandong University of Technology, 266 Xincun Xi road, Zibo 255000, P.R. China
| | - Liantao Hao
- Analysis and Testing Center, Shandong University of Technology, 266 Xincun Xi road, Zibo 255000, P.R. China
| | - Liu Feng
- Analysis and Testing Center, Shandong University of Technology, 266 Xincun Xi road, Zibo 255000, P.R. China
| | - Bingjie Hu
- Analysis and Testing Center, Shandong University of Technology, 266 Xincun Xi road, Zibo 255000, P.R. China
| | - Jinye Niu
- Analysis and Testing Center, Shandong University of Technology, 266 Xincun Xi road, Zibo 255000, P.R. China
| | - Xuliang Zhang
- Analysis and Testing Center, Shandong University of Technology, 266 Xincun Xi road, Zibo 255000, P.R. China
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, 266 Xincun Xi road, Zibo 255000, P.R. China
| | - Shuangying Chen
- Analysis and Testing Center, Shandong University of Technology, 266 Xincun Xi road, Zibo 255000, P.R. China
| | - Bo Liu
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, 266 Xincun Xi road, Zibo 255000, P.R. China
| |
Collapse
|
2
|
Zhao D, Liu H, Zhang C, Xiao X, He Z. UV-induced oxidase activity of carbon dots in visible UVA dosage, Escherichia coli quantification and bacterial typing. Anal Chim Acta 2024; 1288:342140. [PMID: 38220275 DOI: 10.1016/j.aca.2023.342140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 01/16/2024]
Abstract
Ultraviolet (UV) light and foodborne pathogenic bacteriais are an important risk to the environment's safety. They endanger human health, and also lead to outbreaks of infectious disease, posing great threats to global public health security, national economy, and social stability. The appearance of carbon dot (CD) nanozymes offers a new perspective to solve the problems of detection of UV light and pathogenic bacteria in environment. This paper reports the preparation of CDs with dual enzyme-like activities (superoxide dismutase activity and UV-induced oxidase activity). The product can catalyze the oxidation of the substrate 3, 3', 5, 5'-tetramethylbenzidine (TMB) under UV light (365 nm) to achieve rapid color development. Based on the excellent fluorescence properties of CDs, the colorimetric-fluorescence dual-channel real-time detection of UVA dose was realized, the mechanism underlying the catalytic oxidation of TMB by UV-induced oxidase CDs was also investigated. Furthermore, a portable CDs-TMB-PA hydrogel was prepared which could realize the real-time monitoring of UV in outdoor environment with the assistance of smartphone. Based on the pH dependency of the CD nanozymes and specific glycolytic response of the pathogenic bacteria Escherichia coli (E. coli) O157:H7, the direct, simple, quick, and sensitive typing and detection have been realized. This research offers new perspectives for studying CD nanozymes and their applications in UV and bacterial detection, demonstrating the remarkable potential of CD nanozymes in detecting environmental hazards.
Collapse
Affiliation(s)
- Dan Zhao
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, PR China
| | - Huan Liu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, PR China
| | - Changpeng Zhang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, PR China
| | - Xincai Xiao
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, PR China
| | - Zhike He
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, PR China; Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, 430071, PR China.
| |
Collapse
|
3
|
Kim TH, Jeong C, Choi JH, Park HS, Lee KW, Lee TS. Fabrication of nanofibrous PbO 2 electrode embedded with Pt for decomposition of organic chelating agents. CHEMOSPHERE 2023; 344:140386. [PMID: 37813248 DOI: 10.1016/j.chemosphere.2023.140386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/11/2023]
Abstract
A new fabrication method of nanofibrous metal oxide electrode comprising Pt nanofiber (Pt-NF) covered with PbO2 on a Ti substrate was proposed. Pt-NF was obtained by performing sputtering deposition of Pt on the surface of electrospun poly(vinyl alcohol) (PVA) nanofiber on a Ti substrate, in which PVA was then removed by calcination (Ti/Pt-NF). Subsequently, by introducing PbO2 to the Ti/Pt-NF using the electrodeposition method, a nanofibrous Ti/Pt-NF/PbO2 electrode was finally obtained. Because the Ti substrate was covered by nanofibrous Pt, it had no environmental exposure and thus, was not oxidized during calcination. The crystal structure of the PbO2 mainly consisted of β-form rather than α-form; the β-form was suitable for electrochemical decomposition and remained stable even after 20 h of use. The nanofibrous Ti/Pt-NF/PbO2 electrodes showed 10% lower anode potential, 1.6 times higher current density at water decomposition potential, lower electrical resistance in the ion charge transfer resistance, and 2.27 times higher electrochemically active surface area than those of a planar-type Ti/Pt/PbO2 electrode, and demonstrated excellent electrochemical performance. As a result, compared with the planar electrode, the Ti/Pt-NF/PbO2 electrode showed more effective electrochemical decomposition toward nitrilotriacetic acid (80%) and ethylenediaminetetraacetic acid (83%), which are commonly used as chelating agents in nuclear decontamination.
Collapse
Affiliation(s)
- Tae Hyeon Kim
- Institute of Chemical and Biological Engineering, Chungnam National University, Daejeon, 34134, South Korea
| | - Chanhee Jeong
- Department of Organic Materials Engineering, Chungnam National University, Daejeon, 34134, South Korea
| | - Jung-Hoon Choi
- Korea Atomic Energy Research Institute, Daejeon, 34057, South Korea
| | - Hwan-Seo Park
- Korea Atomic Energy Research Institute, Daejeon, 34057, South Korea
| | - Kune-Woo Lee
- Institute of Chemical and Biological Engineering, Chungnam National University, Daejeon, 34134, South Korea.
| | - Taek Seung Lee
- Department of Organic Materials Engineering, Chungnam National University, Daejeon, 34134, South Korea.
| |
Collapse
|
4
|
Blachowicz T, Ehrmann A. Optical Properties of Electrospun Nanofiber Mats. MEMBRANES 2023; 13:441. [PMID: 37103868 PMCID: PMC10146296 DOI: 10.3390/membranes13040441] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 06/19/2023]
Abstract
Electrospun nanofiber mats are usually applied in fields where their high specific surface area and small pore sizes are important, such as biotechnology or filtration. Optically, they are mostly white due to scattering from the irregularly distributed, thin nanofibers. Nevertheless, their optical properties can be modified and become highly important for different applications, e.g., in sensing devices or solar cells, and sometimes for investigating their electronic or mechanical properties. This review gives an overview of typical optical properties of electrospun nanofiber mats, such as absorption and transmission, fluorescence and phosphorescence, scattering, polarized emission, dyeing and bathochromic shift as well as the correlation with dielectric constants and the extinction coefficient, showing which effects may occur and can be measured by which instruments or used for different applications.
Collapse
Affiliation(s)
- Tomasz Blachowicz
- Center for Science and Education, Institute of Physics, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Andrea Ehrmann
- Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany
| |
Collapse
|
5
|
Zhang D, Hu H, Wei JA, Xu X, Chen L, Wu X, Yu Q, Zhang BX, Wang L. Zr-doped TiO2 ceramic nanofibrous membranes for enhancing photocatalytic organic pollutants degradation and antibacterial activity. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
6
|
Zhang J, Wang C, Shi X, Feng Q, Shen T, Wang S. Modulation of the Structure of the Conjugated Polymer TMP and the Effect of Its Structure on the Catalytic Performance of TMP-TiO 2 under Visible Light: Catalyst Preparation, Performance and Mechanism. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1563. [PMID: 36837193 PMCID: PMC9965725 DOI: 10.3390/ma16041563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/01/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
The photocatalytic activity of titanium dioxide (TiO2) is largely hindered by its low photoresponse and quantum efficiency. TiO2 modified by conjugated polymers (CPs) is considered a promising approach to enhance the visible light responsiveness of TiO2. In this work, in order to investigate the effect of CP structural changes on the photocatalytic performance of TiO2 under visible light, trimesoyl chloride-melamine polymers (TMPs) with different structural characteristics were created by varying the parameters of the polymerisation process of tricarbonyl chloride (TMC) and melamine (M). The TMPs were subsequently composited with TiO2 to form complex materials (TMP-TiO2) using an in situ hydrothermal technique. The photocatalytic activity of TMP-TiO2 was evaluated by the degradation of rhodamine B (RhB). The results showed that the trend of the structure of the TMP with the reaction conditions was consistent with the visible light responsiveness of TMP-TiO2, and TMP (1:1)-TiO2 had the best photocatalytic activity and could degrade 96.1% of the RhB. In conclusion, our study provided new insights into the influence of the structural changes of TMPs on the photocatalytic activity of TMP-TiO2 under visible light, and it improves our understanding of how conjugated polymers affect the photocatalytic activity of TiO2 under visible light.
Collapse
Affiliation(s)
- Jing Zhang
- Division of Environmental Science & Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Chen Wang
- Division of Environmental Science & Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Xiaoguo Shi
- Division of Environmental Science & Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Qing Feng
- Division of Environmental Science & Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Tingting Shen
- Division of Environmental Science & Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Siyuan Wang
- Division of Light Industry, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| |
Collapse
|
7
|
Hasnan NSN, Mohamed MA, Anuar NA, Abdul Sukur MF, Mohd Yusoff SF, Wan Mokhtar WNA, Mohd Hir ZA, Mohd Shohaimi NA, Ahmad Rafaie H. Emerging polymeric-based material with photocatalytic functionality for sustainable technologies. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Namgung H, Jo S, Lee TS. Fluorescence Modulation of Conjugated Polymer Nanoparticles Embedded in Poly( N-Isopropylacrylamide) Hydrogel. Polymers (Basel) 2021; 13:polym13244315. [PMID: 34960866 PMCID: PMC8706719 DOI: 10.3390/polym13244315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/03/2021] [Accepted: 12/08/2021] [Indexed: 11/18/2022] Open
Abstract
A series of conjugated polymers (CPs) emitting red, green, and blue (RGB) fluorescence were synthesized via the Suzuki coupling polymerization. Polymer dots (Pdots) were fabricated by the reprecipitation method from corresponding CPs, in which the Pdot surface was functionalized to have an allyl moiety. The CP backbones were based on the phenylene group, causing the Pdots to show identical ultraviolet-visible absorption at 350 nm, indicating that the same excitation wavelength could be used. The Pdots were covalently embedded in poly(N-isopropylacrylamide) (PNIPAM) hydrogel for further use as a thermoresponsive moiety in the polymer hydrogel. The polymer hydrogel with RGB emission colors could provide thermally reversible fluorescence changes. The size of the hydrogel varied with temperature change because of the PNIPAM’s shrinking and swelling. The swollen and contracted conformations of the Pdot-embedded PNIPAM enabled on-and-off fluorescence, respectively. Fluorescence modulation with 20 to 80% of the hydrogel was possible via thermoreversibility. The fluorescent hydrogel could be a new fluorescence-tuning hybrid material that changes with temperature.
Collapse
|
9
|
Oh M, Jo S, Huh TH, Kwark YJ, Lee TS. Synthesis of a conjugated polymer film via interfacial Knoevenagel polymerization and conversion to covalent triazine polymer for photocatalysis. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|