1
|
Recent Advances in the Application of ATRP in the Synthesis of Drug Delivery Systems. Polymers (Basel) 2023; 15:polym15051234. [PMID: 36904474 PMCID: PMC10007417 DOI: 10.3390/polym15051234] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Advances in atom transfer radical polymerization (ATRP) have enabled the precise design and preparation of nanostructured polymeric materials for a variety of biomedical applications. This paper briefly summarizes recent developments in the synthesis of bio-therapeutics for drug delivery based on linear and branched block copolymers and bioconjugates using ATRP, which have been tested in drug delivery systems (DDSs) over the past decade. An important trend is the rapid development of a number of smart DDSs that can release bioactive materials in response to certain external stimuli, either physical (e.g., light, ultrasound, or temperature) or chemical factors (e.g., changes in pH values and/or environmental redox potential). The use of ATRPs in the synthesis of polymeric bioconjugates containing drugs, proteins, and nucleic acids, as well as systems applied in combination therapies, has also received considerable attention.
Collapse
|
2
|
Rodrigues PR, Wang X, Li Z, Lyu J, Wang W, Vieira RP. A new nano hyperbranched β-pinene polymer: Controlled synthesis and nonviral gene delivery. Colloids Surf B Biointerfaces 2023; 222:113032. [PMID: 36463608 DOI: 10.1016/j.colsurfb.2022.113032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/05/2022] [Accepted: 11/16/2022] [Indexed: 11/18/2022]
Abstract
Recently, an extensive research effort has been directed toward the improvement of nonviral transfection vectors, such as polymeric materials. The macromolecular structure of polymers has a substantial effect on their transfection efficacy. In this context, the modern advances in polymer production techniques, such as the deactivation-enhanced radical atom transfer polymerization (DE-ATRP), have been fundamental for the synthesis of controlled architecture nanomaterials. In this study, hyperbranched poly(β-pinene)-PDMAEMA-PEGDMA nanometric copolymers were synthesised at high conversion via DE-ATRP using different concentrations of β-pinene for gene delivery applications. The structural characterization and the biological performance of the materials were investigated. The copolymers' molar mass (10,434-16,438 mol l-1), dispersity, and conversion (90-95%) varied significantly with β-pinene proportion on the polymerizations. The polymer-gene complexes generated (280-110 nm) presented excellent solution stability due to the β-pinene segment on the copolymers. Gene delivery and transfection were highly dependent on the copolymer composition. The copolymers containing the highest β-pinene proportions exhibited the best results with high transfection effectivity. In conclusion, the incorporation of β-pinene in DMAEMA-PEGMA copolymer formulations is a renewable option to improve the materials' branching ratio, polyplex stability, and gene delivery performance without causing cytotoxic effects.
Collapse
Affiliation(s)
- Plínio R Rodrigues
- Department of Bioprocesses and Materials Engineering, School of Chemical Engineering, University of Campinas, Albert Einstein St. N. 500, 13083-852 Campinas, São Paulo, Brazil; Charles Institute of Dermatology, University College Dublin, Belfield, D04 V1W8 Dublin 4, Ireland
| | - Xianqing Wang
- Charles Institute of Dermatology, University College Dublin, Belfield, D04 V1W8 Dublin 4, Ireland
| | - Zishan Li
- Charles Institute of Dermatology, University College Dublin, Belfield, D04 V1W8 Dublin 4, Ireland
| | - Jing Lyu
- Charles Institute of Dermatology, University College Dublin, Belfield, D04 V1W8 Dublin 4, Ireland.
| | - Wenxin Wang
- Charles Institute of Dermatology, University College Dublin, Belfield, D04 V1W8 Dublin 4, Ireland
| | - Roniérik P Vieira
- Department of Bioprocesses and Materials Engineering, School of Chemical Engineering, University of Campinas, Albert Einstein St. N. 500, 13083-852 Campinas, São Paulo, Brazil.
| |
Collapse
|
3
|
Zaborniak I, Chmielarz P. How we can improve ARGET ATRP in an aqueous system: Honey as an unusual solution for polymerization of (meth)acrylates. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2022.111735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
4
|
Flejszar M, Chmielarz P, Oszajca M. Red is the new green: Dry wine‐based miniemulsion as eco‐friendly reaction medium for sustainable atom transfer radical polymerization. J Appl Polym Sci 2022. [DOI: 10.1002/app.53367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Monika Flejszar
- Department of Physical Chemistry, Faculty of Chemistry Rzeszow University of Technology Rzeszów Poland
| | - Paweł Chmielarz
- Department of Physical Chemistry, Faculty of Chemistry Rzeszow University of Technology Rzeszów Poland
| | - Marcin Oszajca
- Faculty of Chemistry Jagiellonian University Kraków 30‐387 Poland
| |
Collapse
|
5
|
Flejszar M, Ślusarczyk K, Chmielarz P, Smenda J, Wolski K, Wytrwal-Sarna M, Oszajca M. SI-ATRP on the lab bench: A facile recipe for oxygen-tolerant PDMAEMA brushes synthesis using microliter volumes of reagents. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
6
|
|
7
|
Zaborniak I, Sroka M, Chmielarz P. Lemonade as a rich source of antioxidants: Polymerization of 2-(dimethylamino)ethyl methacrylate in lemon extract. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
8
|
Flejszar M, Ślusarczyk K, Chmielarz P, Wolski K, Isse AA, Gennaro A, Wytrwal-Sarna M, Oszajca M. Working electrode geometry effect: A new concept for fabrication of patterned polymer brushes via SI-seATRP at ambient conditions. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
9
|
Bodin-Thomazo N, Malloggi F, Pantoustier N, Guenoun P, Rosilio V. Formation and stabilization of multiple w/o/w emulsions encapsulating catechin, by mechanical and microfluidic methods using a single pH-sensitive copolymer: effect of copolymer/drug interaction. Int J Pharm 2022; 622:121871. [PMID: 35636627 DOI: 10.1016/j.ijpharm.2022.121871] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/27/2022]
Abstract
Multiple w/o/w emulsions (MEs) are promising systems for protecting fragile hydrophilic drugs and controlling their release. We explore the capacity of a single pH-sensitive copolymer, PDMS60-b-PDMAEMA50, and salts, to form and stabilize MEs loaded with sucrose or catechin by a one-step mechanical process or a microfluidic method. ME cytotoxicity was evaluated in various conditions of pH. Using the mechanical process, the most stable emulsions were obtained with Miglyol®812N and isopropyl myristate in a final pH range of 8-12 and [0.3 M-1 M] NaCl concentrations. Conversely, with the microfluidic method, isopropyl myristate at pH 3 without salt was more efficient. Catechin strongly affected the formation of droplets by the mechanical process but did not modify the conditions of stability of MEs obtained by the microfluidic method. The antioxidant power of catechin was preserved in the inner droplets, even in emulsions prepared by the mechanical method at pH 8. An incomplete release of sucrose and catechin from the emulsions was observed and attributed to the interaction of molecules with the copolymer through hydrogen bonding. This study highlights some of the barriers to break to formulate multiple emulsions stabilized by a PDMS-b-PDMAEMA copolymer or other polymers which can form hydrogen bonds interaction with encapsulated drugs.
Collapse
Affiliation(s)
- Noémi Bodin-Thomazo
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296, Châtenay-Malabry, France; Université Paris-Saclay, CEA, CNRS, NIMBE, LIONS, 91191, Gif-sur-Yvette, France
| | - Florent Malloggi
- Université Paris-Saclay, CEA, CNRS, NIMBE, LIONS, 91191, Gif-sur-Yvette, France
| | - Nadège Pantoustier
- Sciences et Ingénierie de la Matière Molle, ESPCI Paris, PSL University, Sorbonne-Université, CNRS, 10 rue Vauquelin, Paris 75005, France
| | - Patrick Guenoun
- Université Paris-Saclay, CEA, CNRS, NIMBE, LIONS, 91191, Gif-sur-Yvette, France
| | - Véronique Rosilio
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296, Châtenay-Malabry, France.
| |
Collapse
|
10
|
Surmacz K, Błoniarz P, Chmielarz P. Coffee Beverage: A New Strategy for the Synthesis of Polymethacrylates via ATRP. Molecules 2022; 27:molecules27030840. [PMID: 35164104 PMCID: PMC8840111 DOI: 10.3390/molecules27030840] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/14/2022] [Accepted: 01/25/2022] [Indexed: 11/16/2022] Open
Abstract
Coffee, the most popular beverage in the 21st century society, was tested as a reaction environment for activators regenerated by electron transfer atom transfer radical polymerization (ARGET ATRP) without an additional reducing agent. Two blends were selected: pure Arabica beans and a proportional blend of Arabica and Robusta beans. The use of the solution received from the mixture with Robusta obtained a high molecular weight polymer product in a short time while maintaining a controlled structure of the synthesized product. Various monomers with hydrophilic characteristics, i.e., 2-(dimethylamino)ethyl methacrylate (DMAEMA), oligo(ethylene glycol) methyl ether methacrylate (OEGMA500), and glycidyl methacrylate (GMA), were polymerized. The proposed concept was carried out at different concentrations of coffee grounds, followed by the determination of the molar concentration of caffeine in applied beverages using DPV and HPLC techniques.
Collapse
Affiliation(s)
- Karolina Surmacz
- Doctoral School of Engineering and Technical Sciences, Rzeszow University of Technology, Al. Powstańców Warszawy 8, 35-959 Rzeszow, Poland;
| | - Paweł Błoniarz
- Department of Physical Chemistry, Faculty of Chemistry, Rzeszow University of Technology, Al. Powstańców Warszawy 6, 35-959 Rzeszow, Poland;
| | - Paweł Chmielarz
- Department of Physical Chemistry, Faculty of Chemistry, Rzeszow University of Technology, Al. Powstańców Warszawy 6, 35-959 Rzeszow, Poland;
- Correspondence:
| |
Collapse
|
11
|
Flejszar M, Chmielarz P, Gießl M, Wolski K, Smenda J, Zapotoczny S, Cölfen H. A new opportunity for the preparation of PEEK-based bone implant materials: From SARA ATRP to photo-ATRP. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|