1
|
Kitina PV, Glаgoleva AA, Vasilevskaya VV. Polyampholytes with Various Charge Distributions: Conformation States via Computer Simulation. Macromol Rapid Commun 2024; 45:e2400426. [PMID: 39082438 DOI: 10.1002/marc.202400426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/08/2024] [Indexed: 11/09/2024]
Abstract
By means of molecular dynamics computer simulation, the conformational space of polyampholyte macromolecules with various distributions of the charged groups along the chain is studied. A coarse-grained model where each monomer unit of the chain is presented as a non-charged group in the backbone of the macromolecule connected with a charged side pendant is considered. A limiting case of fully charged chains in the isoelectric point is investigated. The oppositely charged monomer units are distributed in various patterns: regular alternating, multiblock, or random sequences. It is found that the chains with random unit distribution adopt much more compacted conformations than the chains with regular distributions with comparable block lengths. Calculating the chain size and its fluctuation along with the spatial density distribution, coil, and globular conformations are distinguished and arranged on the diagrams in terms of chain length, block length, and Bjerrum length.
Collapse
Affiliation(s)
- Polina V Kitina
- A.N. Nesmeyanov Institute of Organoelement Compounds Russian Academy of Sciences (INEOS RAS), Vavilov str. 28, bld. 1, Moscow, 119334, Russia
| | - Anna A Glаgoleva
- A.N. Nesmeyanov Institute of Organoelement Compounds Russian Academy of Sciences (INEOS RAS), Vavilov str. 28, bld. 1, Moscow, 119334, Russia
| | - Valentina V Vasilevskaya
- A.N. Nesmeyanov Institute of Organoelement Compounds Russian Academy of Sciences (INEOS RAS), Vavilov str. 28, bld. 1, Moscow, 119334, Russia
- Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskie Gory, Moscow, 119991, Russia
| |
Collapse
|
2
|
Hilburg SL, Jin T, Alexander-Katz A. Dynamic transformation of bio-inspired single-chain nanoparticles at interfaces. J Chem Phys 2023; 159:114902. [PMID: 37712796 DOI: 10.1063/5.0164475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/24/2023] [Indexed: 09/16/2023] Open
Abstract
The interfacial behavior of macromolecules dictates their intermolecular interactions, which can impact the processing and application of polymers for pharmaceutical and synthetic use. Using molecular dynamics simulations, we observe the evolution of a random heteropolymer in the presence of liquid-liquid interfaces. The system of interest forms single-chain nanoparticles through hydrophobic collapse in water, lacking permanent crosslinks and making their morphology mutable in new environments. Complex amphiphilic polymers are shown to be capable of stabilizing high interfacial tension water-hexane interfaces, often unfolding to maximize surface coverage. Despite drastic changes to polymer conformation, monomer presence in the water phase is generally maintained and most changes are due to increased hydrophobic solvent exposure toward the oil phase. These results are then compared to the behavior at the water-graphene interface, where the macromolecules adsorb but do not remodel. The polymer's behavior is shown to depend significantly on both its own amphiphilic character and the deformability of the interface.
Collapse
Affiliation(s)
- Shayna L Hilburg
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Tianyi Jin
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Alfredo Alexander-Katz
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
3
|
Ushakova AS, Vasilevskaya VV. Hedgehog, Chamomile and Multipetal Polymeric Structures on the Nanoparticle Surface: Theoretical Insights. Polymers (Basel) 2022; 14:polym14204358. [PMID: 36297936 PMCID: PMC9609382 DOI: 10.3390/polym14204358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
An analytical theory describing the variety of different morphological structures that spontaneously self-assemble in layers of amphiphilic homopolymers tightly grafted to spherical nanoparticle is proposed. For this purpose, the following structures were identified and outlined: hedgehogs, in which macromolecules are combined into cylindrical aggregates; chamomile, when cylindrical aggregates are connected by their ends into loops; multipetal structure with macromolecules self-assembling into thin lamellae; and unstructured, swollen and uniformly compacted shells. The results are presented in the form of state diagrams and serve as a basis for the directional design of the surface pattern by varying system parameters (particle radius, grafting density and degree of polymerization) and solvent properties (quality and selectivity).
Collapse
Affiliation(s)
- Aleksandra S. Ushakova
- A.N. Nesmeyanov Institute of Organoelement Compounds RAS, Vavilova St. 28, 119991 Moscow, Russia
| | - Valentina V. Vasilevskaya
- A.N. Nesmeyanov Institute of Organoelement Compounds RAS, Vavilova St. 28, 119991 Moscow, Russia
- Chemistry Department, M. V. Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow, Russia
- Correspondence:
| |
Collapse
|
4
|
Matrix free polymer nanocomposites from amphiphilic hairy nanoparticles: Solvent selectivity and mechanical properties. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
Bulgakov AI, Ivanov VA, Vasilevskaya VV. Self-Assembly of Gel-Like Particles and Vesicles in Solutions of Polymers with Amphiphilic Repeat Unit. POLYMER SCIENCE SERIES A 2022. [DOI: 10.1134/s0965545x22030063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Buglakov AI, Vasilevskaya VV. Fibrillar gel self-assembly via cononsolvency of amphiphilic polymer. J Colloid Interface Sci 2022; 614:181-193. [DOI: 10.1016/j.jcis.2022.01.095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 11/25/2022]
|
7
|
Hilburg SL, Alexander-Katz A. Solvent Remodeling in Single-Chain Amphiphilic Heteropolymer Systems. Macromol Rapid Commun 2022; 43:e2200142. [PMID: 35298063 DOI: 10.1002/marc.202200142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/08/2022] [Indexed: 11/08/2022]
Abstract
This work demonstrates the remodeling of single-chain nanoparticles (SCNPs) upon a transition to organic solvent through molecular dynamics simulations. Methacrylate-based random heteropolymers (RHPs), assembled via transient non-covalent linkages in water, have shown promise in an assortment of applications that harness their bio-inspired properties. While their molecular behavior has been broadly characterized in aqueous environments, many newer applications include the use of organic solvent rather than bio-mimetic conditions. The polymer assemblies, typically driven by the hydrophobic effect in water, are less well understood in non-aqueous solution. Here, a specific RHP system is examined which forms compact globular morphologies in highly polar or highly non-polar environments while adopting extended conformations in solvents of intermediate polarity. The pivotal role of electrostatic interactions between charge groups in low dielectric mediums is also observed. Finally, high temperature anneal cycles are compared to room temperature transformations to illuminate barriers to remodeling upon environmental changes. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Shayna L Hilburg
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Alfredo Alexander-Katz
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| |
Collapse
|
8
|
Hu S, Yan J, Yang G, Ma C, Yin J. Self-Assembled Polymeric Materials: Design, Morphology, and Functional-Oriented Applications. Macromol Rapid Commun 2021; 43:e2100791. [PMID: 34967061 DOI: 10.1002/marc.202100791] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/15/2021] [Indexed: 11/10/2022]
Abstract
This Review focuses on the current research advances of the synthesis of various amphiphilic block copolymers (ABCs), such as conventional ABCs and newly-presented polyprodrug amphiphiles (PPAs), and the development of corresponding self-assemblies in selective solvents driven by the intermolecular interactions, like noncovalent hydrophobic interactions, π-π interactions, and hydrogen bonds, between ABCs or preformed small polymeric nanoparticles. The design of these assemblies is systematically introduced, and the diverse examples concerning the unique assembly structures along with the fast development of their exclusive properties and various applications in different fields were discussed. Possible perspectives on the existential challenges and glorious future were elucidated finally. We hope this review will provide a convenient way for readers to motivate more evolutional innovative concepts and methods to design next generation of novel polymeric nanoassemblies, and fill the gap between material design and practical applications. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Shoukui Hu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering Hefei, Anhui, 230009, P. R. China
| | - Jinhao Yan
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering Hefei, Anhui, 230009, P. R. China
| | - Guangwei Yang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering Hefei, Anhui, 230009, P. R. China
| | - Chao Ma
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering Hefei, Anhui, 230009, P. R. China
| | - Jun Yin
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering Hefei, Anhui, 230009, P. R. China
| |
Collapse
|