1
|
Jin P, Yao Q, Cao W, Sun J, Zhao Y. Effects of Organophosphorus Flame Retardants on the Dissipation Factor of Flame-Retardant Polymers. Polymers (Basel) 2025; 17:1254. [PMID: 40363038 PMCID: PMC12073205 DOI: 10.3390/polym17091254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2025] [Revised: 05/01/2025] [Accepted: 05/02/2025] [Indexed: 05/15/2025] Open
Abstract
To understand the effect of the hydroxyl group and processing temperatures on dielectric losses of flame retardants and flame-retardant polymers, the performance difference between 6-methyldibenzo[c,e][1,2]oxaphosphinine 6-oxide (DOPO-Me) and 6-(hydroxymethyl)dibenzo[c,e][1,2]oxaphosphinine 6-oxide (DOPO-HM) has been investigated, respectively, in non-polar and polar polymers at 7-20 GHz. DOPO-HM and DOPO-Me differ by only one OH group. The former demonstrates a lower dissipation factor (Df) than the latter, owing to hydrogen bonds. In polystyrene and crosslinked polyphenylene oxide, both flame retardants increase a dielectric loss of flame-retardant polymers, with DOPO-HM being less detrimental because of its higher crystallizability and lower plasticization. In polar poly(methyl methacrylate) (PMMA), conformational changes in PMMA main chains caused by flame retardants and high processing temperatures lead to an early Df drop of PMMA at low loadings of the flame retardants. At high loadings, a change in the physical form of flame retardants from a primitive crystalline state to an amorphous state increases a dielectric loss of flame retardant PMMA, with DOPO-HM resulting in a slightly higher dielectric loss than DOPO-Me. These results prove that the effect of a hydroxyl group in organophosphorus structures on the dielectric loss of flame-retardant polymers is crucially dependent on its interaction with the polymer matrix.
Collapse
Affiliation(s)
- Peng Jin
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China;
| | - Qiang Yao
- Key Laboratory of Bio-Based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; (W.C.); (J.S.); (Y.Z.)
- Ningbo College of Materials Engineering, University of Chinese Academy of Sciences, Ningbo 315201, China
| | - Weihong Cao
- Key Laboratory of Bio-Based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; (W.C.); (J.S.); (Y.Z.)
| | - Jinhao Sun
- Key Laboratory of Bio-Based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; (W.C.); (J.S.); (Y.Z.)
| | - Yueying Zhao
- Key Laboratory of Bio-Based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; (W.C.); (J.S.); (Y.Z.)
| |
Collapse
|
2
|
Tao Y, Liang X, Zhang J, Lei IM, Liu J. Polyurethane vitrimers: Chemistry, properties and applications. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yue Tao
- Department of Mechanical and Energy Engineering Southern University of Science and Technology Shenzhen China
| | - Xiangyu Liang
- Department of Mechanical and Energy Engineering Southern University of Science and Technology Shenzhen China
- Agricultural Genomics Institute at Shenzhen Chinese Academy of Agricultural Sciences Shenzhen China
- Institute of Bast Fiber Crops and Center of Southern Economic Crops Chinese Academy of Agricultural Sciences Changsha China
| | - Jun Zhang
- Department of Mechanical and Energy Engineering Southern University of Science and Technology Shenzhen China
| | - Iek Man Lei
- Department of Mechanical and Energy Engineering Southern University of Science and Technology Shenzhen China
- Department of Electromechanical Engineering, Faculty of Science and Technology University of Macau Macau China
| | - Ji Liu
- Department of Mechanical and Energy Engineering Southern University of Science and Technology Shenzhen China
| |
Collapse
|
3
|
Sharma H, Rana S, Singh P, Hayashi M, Binder WH, Rossegger E, Kumar A, Schlögl S. Self-healable fiber-reinforced vitrimer composites: overview and future prospects. RSC Adv 2022; 12:32569-32582. [PMID: 36425695 PMCID: PMC9661690 DOI: 10.1039/d2ra05103f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/02/2022] [Indexed: 08/15/2023] Open
Abstract
To achieve sustainable development goals, approaches towards the preparation of recyclable and healable polymeric materials is highly attractive. Self-healing polymers and thermosets based on bond-exchangeable dynamic covalent bonds, so called "vitrimers" could be a great effort in this direction. In order to match the industrial importance, enhancement of mechanical strength without sacrificing the bond exchange capability is a challenging issue, however, such concerns can be overcome through the developments of fiber-reinforced vitrimer composites. This article covers the outstanding features of fiber-reinforced vitrimer composites, including their reprocessing, recycling and self-healing properties, together with practical applications and future perspectives of this unique class of materials.
Collapse
Affiliation(s)
- Harsh Sharma
- University of Petroleum & Energy Studies (UPES), School of Engineering Energy Acres, Bidholi Dehradun 248007 India
| | - Sravendra Rana
- University of Petroleum & Energy Studies (UPES), School of Engineering Energy Acres, Bidholi Dehradun 248007 India
| | - Poonam Singh
- University of Petroleum & Energy Studies (UPES), School of Engineering Energy Acres, Bidholi Dehradun 248007 India
| | - Mikihiro Hayashi
- Department of Life Science and Applied Chemistry, Graduated School of Engineering, Nagoya Institute of Technology Showa-ku Nagoya 466-8555 Japan
| | - Wolfgang H Binder
- Chair of Macromolecular Chemistry, Institute of Chemistry, Faculty of Natural Science II, Martin Luther University Halle-Wittenberg Von-Danckelmann-Platz 4 Halle 06120 Germany
| | - Elisabeth Rossegger
- Chemistry of Functional Polymers, Polymer Competence Center Leoben GmbH Roseggerstraße 12 A-8700 Leoben Austria
| | - Ajay Kumar
- University of Petroleum & Energy Studies (UPES), School of Engineering Energy Acres, Bidholi Dehradun 248007 India
| | - Sandra Schlögl
- Chemistry of Functional Polymers, Polymer Competence Center Leoben GmbH Roseggerstraße 12 A-8700 Leoben Austria
| |
Collapse
|
4
|
He C, Dong J, Xu C, Pan X. N-Coordinated Organoboron in Polymer Synthesis and Material Science. ACS POLYMERS AU 2022. [DOI: 10.1021/acspolymersau.2c00046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Congze He
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Jin Dong
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Chaoran Xu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Xiangcheng Pan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| |
Collapse
|
5
|
Chen YC, Reddy KSK, Lin YA, Wang MW, Lin CH. Tetrafluorophenylene-Containing Vinylbenzyl Ether-Terminated Oligo(2,6-dimethyl-1,4-phenylene ether) with Better Thermal, Dielectric, and Flame-Retardant Properties for Application in High-Frequency Communication. ACS OMEGA 2022; 7:26396-26406. [PMID: 35936464 PMCID: PMC9352225 DOI: 10.1021/acsomega.2c02067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
In an integrated circuit, signal propagation loss is proportional to the frequency, dissipation factor (D f), and square root of dielectric constant (D k). The loss becomes obvious as we move to high-frequency communication. Therefore, a polymer having low D k and D f is critical for copper-clad laminates at higher frequencies. For this purpose, a 4-vinylbenzyl ether phenoxy-2,3,5,6-tetrafluorophenylene-terminated OPE (VT-OPE) resin was synthesized and its properties were compared with the thermoset of commercial OPE-2St resin. The thermoset of VT-OPE shows a higher T g (242 vs 229 °C), a relatively high cross-linking density (1.59 vs 1.41 mmole cm-3), a lower coefficient of thermal expansion (55 vs 76 ppm/°C), better dielectric characteristic at 10 GHz (D k values of 2.58 vs 2.75, D f values of 0.005 vs 0.006), lower water absorption (0.135 vs 0.312 wt %), and better flame retardancy (UL-94 VTM-0 vs VTM-1 with dropping seriously) than the thermoset of OPE-2St. To verify the practicability of VT-OPE for copper-clad laminate, a laboratory process was also performed to prepare a copper-clad laminate, which shows a high peeling strength with copper foil (5.5 lb/in), high thermal reliability with a solder dipping test at 288 °C (>600 s), and the time for delamination of the laminate in thermal mechanical analysis (TMA) at 288 °C is over 60 min.
Collapse
Affiliation(s)
- Yi-Chun Chen
- Advanced
Research Center for Green Materials Science and Technology, National Taiwan University, 106, No. 1, Section 4, Roosevelt
Road, Room 219, School of Engineering Complex, Taipei 10617, Taiwan
| | - Kamani Sudhir K. Reddy
- Department
of Chemical Engineering, National Chung
Hsing University, No. 145, Xingda Road, South District, Taichung 40227, Taiwan
| | - Yu-An Lin
- Department
of Chemical Engineering, National Chung
Hsing University, No. 145, Xingda Road, South District, Taichung 40227, Taiwan
| | - Meng-Wei Wang
- Advanced
Material Development Department, Swancor
High polymer Company Limited by Shares, Nantou 54066, Taiwan
| | - Ching-Hsuan Lin
- Department
of Chemical Engineering, National Chung
Hsing University, No. 145, Xingda Road, South District, Taichung 40227, Taiwan
| |
Collapse
|
6
|
Baseer RA, Ewies EF, Ismail AM. Synthesis, optical and dielectric properties of polyacryloyloxy imino fluorophenyl acetamide and polyacryloyloxy imino fluorophenyl acetamide-co-polystyrene sulfonate. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03159-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AbstractOur scope is synthesis a new poly fluorobenzamide oxime ester and study its structural, optical, and dielectric properties. Consequently, ((E)-2-((acryloyloxy)imino)-N-(4-fluorophenyl) acetamide) (AIFPA) was as-synthesized via a condensation reaction of (E)-N-(4-fluorophenyl)-2-(hydroxyimino) acetamide with acrylic acid to polymerize it via free radical polymerization (PAIFPA). over and above, the synthesized PAIFPA was inserted in more polymerization action with polystyrene sulfonate through the grafting process (PAIFPA-co-PSS). The chemical structures and morphology of AIFPA, PAIFPA, and PAIFPA-co-PSS were characterized by 1H NMR, FTIR, and XRD. The crystallinity index of PAIFPA, and PAIFPA-co-PSS was studied, affording that PAIFPA-co-PSS has the highest crystallinity. Moreover, The optical bandgap that obtained from absorbance analysis was encountered to be in the range of 2.6 eV to 3.5 eV. Ultimately, the dielectric properties of PAIFPA, and PAIFPA-co-PSS showed that electric conductivity values ranged from 6.12 × 10–8 to 7.11 × 10–7 S.cm−1, and 5.48 × 10–10 to 7.75 × 10–8 S.cm−1, respectively. It has a great deal of interest of PAIFPA-co-PSS which has wide band gap energy as short-wavelength light absorbers to be used in tandem polymer solar cells.
Collapse
|