1
|
Wu W, Yu D, Luo Y, Guan X, Zhang S, Ma G, Zhou X, Li C, Wang S. Introduction of polymeric ionic liquids containing quaternary ammonium groups to construct high-temperature proton exchange membranes with high proton conductivity and stability. J Colloid Interface Sci 2024; 675:689-699. [PMID: 38996699 DOI: 10.1016/j.jcis.2024.06.195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/18/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024]
Abstract
A series of membrane materials suitable for high-temperature proton exchange membranes (HT-PEM) were successfully prepared by introducing polymeric ionic liquids (PILs) containing quaternary ammonium groups into ether-bonded polybenzimidazole (OPBI). The structure of the cross-linked membrane has a strong interaction with phosphoric acid (PA), which enhances proton transport and PA retention. To ensure better overall performance of the cross-linked membrane, the optimal PIL content is 30 wt% (OPBI-PIL-30 %). The PA uptake of OPBI-PIL-30 % membrane was 323.24 %, and the proton conductivity at 180 ℃ was 113.94 mS cm-1, which was much higher than that of OPBI membrane. It is noteworthy that the PA retention of OPBI-PIL-30 % membrane could reach 71.38 % after 240 h of testing under the harsh environment of 80 ℃/40 % RH. The membrane showed better acid retention capacity of 86.89 % at 160 ℃ under anhydrous environment. The OPBI-PIL-20 % membrane achieved the maximum power density of 436.19 mW cm-2, attributed to its favorable mechanical characteristics and proton conductivity. By these excellent properties, it is shown that OPBI-PIL-X membranes containing quaternary ammonium groups have the potential to be applied in high temperature proton exchange membrane fuel cells (HT-PEMFCs).
Collapse
Affiliation(s)
- Wanzhen Wu
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, People's Republic of China
| | - Di Yu
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, People's Republic of China
| | - Yu Luo
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, People's Republic of China
| | - Xianfeng Guan
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, People's Republic of China
| | - Shuyu Zhang
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, People's Republic of China
| | - Guangpeng Ma
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, People's Republic of China
| | - Xinpu Zhou
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, People's Republic of China
| | - Cuicui Li
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, People's Republic of China
| | - Shuang Wang
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, People's Republic of China; Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, People's Republic of China.
| |
Collapse
|
2
|
Zhang W, Ji J, Li H, Li J, Sun Y, Tang Y, Yang T, Jin W, Zhao Y, Huang C, Gong C. Nitrogen-Rich Covalent Organic Frameworks Composited High-Temperature Proton Exchange Membranes with Ultralow Volume Expansion and Reduced Phosphoric Acid Leakage. ACS APPLIED MATERIALS & INTERFACES 2024; 16:52309-52325. [PMID: 39293059 DOI: 10.1021/acsami.4c10408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Phosphoric acid (PA) leakage and volume expansion are critical factors limiting long-term stable operation of PA-doped polybenzimidazole (PBI) for high-temperature proton exchange membrane fuel cells. Enhancing the interaction between the polymer matrix and PA provides an effective way to minimize PA loss and inhibit excessive membrane swelling. The covalent organic frameworks (COFs) are helpful in improving the performance of PA-PBI membranes due to the robust frameworks, adjustable structures, and good compatibility with polymers. Here, in this work, we synthesized porous COFs named TTA-DFP containing triazine rings and pyridine groups at room temperature for as short as 2 h without oxygen isolation. TTA-DFP was then blended with commercial poly[2,2'-(p-oxidiphenylene)-5,5'-benzimidazole] (OPBI) to prepare composite membranes. The abundant alkaline N sites in TTA-DFP exhibit strong interactions with PA and OPBI, which not only provide more proton transport pathways to promote proton conduction but also immobilize PA in acidophilic micropores to reduce PA leakage. The composite membranes exhibit a much lower volume swelling ratio than that of the OPBI membrane. The PA retention of the composite membrane after 120 h of treatment at 80 °C and 40% relative humidity can reach as high as 84.6%. Particularly, the proton conductivity of the composite membrane doped with 15 wt% TTA-DFP achieves 0.112 S cm-1 at 180 °C without humidification with a swelling ratio of 24.1%. In addition, it has an optimal peak power density of 824.4 mW cm-2 at 180 °C, which is 1.7 times that of the OPBI membrane. The stability of the composite membrane is much better than that of OPBI at a current density of 0.3 A cm-2 at 140 °C for 120 h.
Collapse
Affiliation(s)
- Weiyu Zhang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design of Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
- National Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Xiamen 361101, P. R. China
| | - Jiaqi Ji
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design of Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Hong Li
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design of Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Jie Li
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design of Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yiming Sun
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design of Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yi Tang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design of Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Tianqi Yang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design of Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Weiyi Jin
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design of Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yongqing Zhao
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design of Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Congshu Huang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design of Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
- National Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Xiamen 361101, P. R. China
| | - Chenliang Gong
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design of Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
3
|
Rudra S, Mondal S, Chakraborty M, Swamy MJ, Jana T. Galactose Glycopolymer- Grafted Silica Nanoparticles: Synthesis and Binding Studies with Lectin. ACS APPLIED BIO MATERIALS 2024; 7:5689-5701. [PMID: 39116418 DOI: 10.1021/acsabm.4c00759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Weak binding of carbohydrates with protein receptors possesses serious drawbacks in the advancement of therapeutics; however, the development of strategies for multipoint interactions between carbohydrates and protein can overcome these challenges. One such method is developed in this work where glycopolymer-grafted silica nanoparticles with a large number of carbohydrate units are prepared for the interactions with multiple binding sites of the protein. First, a glycomonomer, β-d-galactose-hydroxyethyl methacrylate (β-GEMA), was synthesized in a two-step process by coupling β-d-galactose pentaacetate and hydroxyethyl methacrylate (HEMA), followed by deacetylation for the preparation of poly(β-GEMA) glycopolymers (GPs). Further, the poly(β-GEMA) chains were grafted onto the silica nanoparticle (SiNP) surface by utilizing the "grafting-from" strategy of surface-initiated reversible addition-fragmentation chain transfer (RAFT) polymerization to prepare p(β-GEMA)-grafted SiNPs (GNPs). Five different chain lengths ranging from 10 to 40 kDa of the GPs and the GNPs were prepared, and various characterization techniques confirmed the formation of GPs and grafting of the GPs on the SiNP surface. The particle size of GNPs and the number of GPs grafted on the SiNP surface showed a strong dependence on the chain length of the GPs. Further, the GNPs were subjected to a binding study with β-galactose-specific protein peanut agglutinin (PNA). A much stronger binding in the case of GNPs was observed with an association constant ∼320 times and ∼53 times than that of the monomeric methyl-β-d-galactopyranoside and the GPs, respectively. Additionally, the binding of the PNA with GNPs and GPs was also studied with varying chain lengths to understand the effects of the chain length on the binding affinity. A clear increase in binding constants was observed in the case of GNPs with increasing chain length of grafted GPs, attributed to the enhanced enthalpic and entropic contributions. This work holds its uniqueness in these improved interactions between carbohydrates and proteins, which can be used for carbohydrate-based targeted therapeutics.
Collapse
Affiliation(s)
- Somdatta Rudra
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| | - Saradamoni Mondal
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| | | | - Musti J Swamy
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| | - Tushar Jana
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| |
Collapse
|
4
|
Javed A, Palafox Gonzalez P, Thangadurai V. A Critical Review of Electrolytes for Advanced Low- and High-Temperature Polymer Electrolyte Membrane Fuel Cells. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37326582 DOI: 10.1021/acsami.3c02635] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In the 21st century, proton exchange membrane fuel cells (PEMFCs) represent a promising source of power generation due to their high efficiency compared with coal combustion engines and eco-friendly design. Proton exchange membranes (PEMs), being the critical component of PEMFCs, determine their overall performance. Perfluorosulfonic acid (PFSA) based Nafion and nonfluorinated-based polybenzimidazole (PBI) membranes are commonly used for low- and high-temperature PEMFCs, respectively. However, these membranes have some drawbacks such as high cost, fuel crossover, and reduction in proton conductivity at high temperatures for commercialization. Here, we report the requirements of functional properties of PEMs for PEMFCs, the proton conduction mechanism, and the challenges which hinder their commercial adaptation. Recent research efforts have been focused on the modifications of PEMs by composite materials to overcome their drawbacks such as stability and proton conductivity. We discuss some current developments in membranes for PEMFCs with special emphasis on hybrid membranes based on Nafion, PBI, and other nonfluorinated proton conducting membranes prepared through the incorporation of different inorganic, organic, and hybrid fillers.
Collapse
Affiliation(s)
- Aroosa Javed
- Department of Chemistry, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | | | | |
Collapse
|
5
|
Gorre A, Das A, Jana T. Mixed matrix composite PEM with super proton conductivity developed from ionic liquid modified silica nanoparticle and polybenzimidazole. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2022. [DOI: 10.1080/10601325.2022.2154677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Akhil Gorre
- School of Chemistry, University of Hyderabad, Hyderabad, India
| | - Anupam Das
- School of Chemistry, University of Hyderabad, Hyderabad, India
| | - Tushar Jana
- School of Chemistry, University of Hyderabad, Hyderabad, India
| |
Collapse
|