1
|
Pinto RS, Serra JP, Barbosa JC, Silva MM, Salado M, Fidalgo Marijuan A, Amayuelas E, Grosu Y, Gonçalves R, Lanceros-Mendez S, Costa CM. Tailoring poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) membrane microstructure for lithium-ion battery separator applications. J Colloid Interface Sci 2024; 680:714-724. [PMID: 39536548 DOI: 10.1016/j.jcis.2024.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/21/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Novel battery separators based on poly(vinylidene fluoride-co-trifluoroethylene-chlorofluoroethylene)- P(VDF-TrFE-CFE)- were produced by different processing techniques (non-solvent and thermally induced phase separation, salt leaching and electrospinning), in order to evaluate their effect on separator morphology, degree of porosity and pore size, electrochemical parameters and battery cycling behavior. It has been demonstrated that the different processing techniques have a significant influence on the morphology and mechanical properties of membranes. The degree of porosity varies between 23 % and 66 %, for membranes obtained by salt leaching and thermally induced phase separation, respectively. The membranes present a high ionic conductivity value ranging between 1.8 mS.cm-1 for the electrospun membrane and 0.20 mS.cm-1 for the membrane processed by thermally induced phase separator. The lithium transference number value for all membranes is above 0.20, the highest value of 0.55 being obtained for samples prepared by salt leaching and thermally induced phase separation. For all membranes, battery capacity values have been obtained at different C-rates with excellent reversibility. P(VDF-TrFE-CFE) samples present an excellent battery performance at 1C-rate after 100 cycles with 74 mAh.g-1 and excellent coulombic efficiency, for membrane processed by the salt leaching technique. This work demonstrates that P(VDF-TrFE-CFE) terpolymer can be used as a porous membrane in lithium-ion battery separator application, the membrane processing technique allowing to tailor its morphology and, consequently, battery performance.
Collapse
Affiliation(s)
- Rafael S Pinto
- Physics Centre of Minho and Porto Universities (CF-UM-UP) and Laboratory of Physics for Materials and Emergent Technologies, LapMET, University of Minho,4710-057 Braga, Portugal; Centre of Chemistry, University of Minho, 4710-057 Braga, Portugal
| | - João P Serra
- Physics Centre of Minho and Porto Universities (CF-UM-UP) and Laboratory of Physics for Materials and Emergent Technologies, LapMET, University of Minho,4710-057 Braga, Portugal
| | - João C Barbosa
- Centre of Chemistry, University of Minho, 4710-057 Braga, Portugal
| | - Maria M Silva
- Centre of Chemistry, University of Minho, 4710-057 Braga, Portugal
| | - Manuel Salado
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - Arkaitz Fidalgo Marijuan
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; Department of Organic and Inorganic Chemistry, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
| | - Eder Amayuelas
- Centre for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Alava Technology Park, Albert Einstein 48, 01510 Vitoria-Gasteiz, Spain
| | - Yaroslav Grosu
- Centre for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Alava Technology Park, Albert Einstein 48, 01510 Vitoria-Gasteiz, Spain; Institute of Chemistry, University of Silesia in Katowice, Szkolna 9, 40-006 Katowice, Poland
| | - Renato Gonçalves
- Centre of Chemistry, University of Minho, 4710-057 Braga, Portugal
| | - Senentxu Lanceros-Mendez
- Physics Centre of Minho and Porto Universities (CF-UM-UP) and Laboratory of Physics for Materials and Emergent Technologies, LapMET, University of Minho,4710-057 Braga, Portugal; BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Carlos M Costa
- Physics Centre of Minho and Porto Universities (CF-UM-UP) and Laboratory of Physics for Materials and Emergent Technologies, LapMET, University of Minho,4710-057 Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal.
| |
Collapse
|
2
|
Zhang ZK, Ding SP, Ye Z, Xia DL, Xu JT. PEO-Based Block Copolymer Electrolytes Containing Double Conductive Phases with Improved Mechanical and Electrochemical Properties. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7930. [PMID: 36431415 PMCID: PMC9699265 DOI: 10.3390/ma15227930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
In this work, the advanced all solid-state block copolymer electrolytes (SBCPEs) for lithium-ion batteries with double conductive phases, poly(ethylene oxide)-b-poly(trimethyl-N-((2-(dimethylamino)ethyl methacrylate)-7-propyl)-ammonium bis(trifluoromethanesulfonyl) imide) (PEO-b-PDM-dTFSI)/LiTFSI, were fabricated, in which the charged PDM-dTFSI block contained double quaternary ammonium cations and the PEO block was doped with LiTFSI. The disordered (DIS) and ordered lamellae (LAM) phase structures were achieved by adjusting the composition of the block copolymer and the doping ratio r. In addition, the presence of the hard PDM-dTFSI block and the formation of the LAM phase structure resulted in a good mechanical strength of the solid PEO-b-PDM-dTFSI/LiTFSI electrolyte, and it could maintain a high level of 104 Pa at 100 °C, which was around 10,000 times stronger than that of the PEO/LiTFSI electrolyte. Based on the good mechanical and electrochemical properties, the PEO-b-PDM-dTFSI/LiTFSI SBCPE exhibited excellent long-term galvanostatic cycle performance, indicating the strong ability to suppress lithium dendrites.
Collapse
|
3
|
Xu H, Huang S, Qian J, Liu S, Li L, Zhao X, Zhang W. Safe solid-state PEO/TPU/LLZO nano network polymer composite gel electrolyte for solid state lithium batteries. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|