1
|
Long H, Lei J, Liu K, Hu G, Chen F, Liu X, Liu W, Xiong Q. Comprehensive investigation of the interactions between natural rubber and lignin by molecular dynamics simulation. Int J Biol Macromol 2025; 310:143252. [PMID: 40250660 DOI: 10.1016/j.ijbiomac.2025.143252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 04/08/2025] [Accepted: 04/15/2025] [Indexed: 04/20/2025]
Abstract
Currently, the interaction behavior of natural rubber-lignin (NR-L) remains unclear. In this study, we successfully replicated the density, glass transition temperature, and mechanical properties of NR-L using molecular dynamics coupled with GAFF. Using these models, we rigorously investigated the interaction behavior of these systems, which revealed that when the ambient temperature was lower than the thermal decomposition temperature, there was almost no impact on system properties, including density, structure, interaction forces, radial pair distribution function, free volume, radius of gyration, and lignin hydrogen bonding, as no significant enthalpy change occurred. The influence of hardwood lignin and softwood lignin on NR strength varied according to the concentration of lignin. At low concentration, the electron density cloud between highly branched hardwood lignin and NR is lower, leading to smaller interactions. However, at higher concentrations, the van der Waals term between the less polar and larger number of atoms of hardwood lignin and NR becomes stronger, resulting in the opposite trend being observed. Furthermore, NR-L is governed primarily by van der Waals forces, while lignin-lignin is governed primarily by electrostatic interactions. These detailed characterizations offered valuable insight for future research endeavors aimed at designing and synthesizing green NR-L composites at the atomic scale.
Collapse
Affiliation(s)
- Hua Long
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China; School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Junjie Lei
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Kunfeng Liu
- School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Guoxiang Hu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China; School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Fangjun Chen
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China; School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Xiaowen Liu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China; School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Weifeng Liu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China; School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Qingang Xiong
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China; School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
2
|
Zhang S, Ji Y, He Y, Dong J, Li H, Yu S. Effect of Environmental pH on the Mechanics of Chitin and Chitosan: A Single-Molecule Study. Polymers (Basel) 2024; 16:995. [PMID: 38611253 PMCID: PMC11014069 DOI: 10.3390/polym16070995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/29/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024] Open
Abstract
Chitin and chitosan are important structural macromolecules for most fungi and marine crustaceans. The functions and application areas of the two molecules are also adjacent beyond their similar molecular structure, such as tissue engineering and food safety where solution systems are involved. However, the elasticities of chitin and chitosan in solution lack comparison at the molecular level. In this study, the single-molecule elasticities of chitin and chitosan in different solutions are investigated via atomic force microscope (AFM) based single-molecule spectroscopy (SMFS). The results manifest that the two macromolecules share the similar inherent elasticity in DOSM due to their same chain backbone. However, obvious elastic deviations can be observed in aqueous conditions. Especially, a lower pH value (acid environment) is helpful to increase the elasticity of both chitin and chitosan. On the contrary, the tendency of elastic variation of chitin and chitosan in a larger pH value (alkaline environment) shows obvious diversity, which is mainly determined by the side groups. This basic study may produce enlightenment for the design of intelligent chitin and chitosan food packaging and biomedical materials.
Collapse
Affiliation(s)
- Song Zhang
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564502, China; (Y.J.); (Y.H.); (J.D.); (H.L.)
| | | | | | | | | | - Shirui Yu
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564502, China; (Y.J.); (Y.H.); (J.D.); (H.L.)
| |
Collapse
|
3
|
Zhang S, Yu M, Zhang G, He G, Ji Y, Dong J, Zheng H, Qian L. Revealing the Control Mechanisms of pH on the Solution Properties of Chitin via Single-Molecule Studies. Molecules 2023; 28:6769. [PMID: 37836611 PMCID: PMC10574145 DOI: 10.3390/molecules28196769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/16/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Chitin is one of the most common polysaccharides and is abundant in the cell walls of fungi and the shells of insects and aquatic organisms as a skeleton. The mechanism of how chitin responds to pH is essential to the precise control of brewing and the design of smart chitin materials. However, this molecular mechanism remains a mystery. Results from single-molecule studies, including single-molecule force spectroscopy (SMFS), AFM imaging, and molecular dynamic (MD) simulations, have shown that the mechanical and conformational behaviors of chitin molecules show surprising pH responsiveness. This can be compared with how, in natural aqueous solutions, chitin tends to form a more relaxed spreading conformation and show considerable elasticity under low stretching forces in acidic conditions. However, its molecular chain collapses into a rigid globule in alkaline solutions. The results show that the chain state of chitin can be regulated by the proportions of inter- and intramolecular H-bonds, which are determined via the number of water bridges on the chain under different pH values. This basic study may be helpful for understanding the cellular activities of fungi under pH stress and the design of chitin-based drug carriers.
Collapse
Affiliation(s)
- Song Zhang
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564502, China; (S.Z.); (G.Z.); (G.H.); (Y.J.); (J.D.)
| | - Miao Yu
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China;
| | - Guoqiang Zhang
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564502, China; (S.Z.); (G.Z.); (G.H.); (Y.J.); (J.D.)
| | - Guanmei He
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564502, China; (S.Z.); (G.Z.); (G.H.); (Y.J.); (J.D.)
| | - Yunxu Ji
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564502, China; (S.Z.); (G.Z.); (G.H.); (Y.J.); (J.D.)
| | - Juan Dong
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564502, China; (S.Z.); (G.Z.); (G.H.); (Y.J.); (J.D.)
| | - Huayan Zheng
- Department of Food Science and Engineering, Moutai Institute, Renhuai 564502, China; (S.Z.); (G.Z.); (G.H.); (Y.J.); (J.D.)
| | - Lu Qian
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
4
|
Yu M, Zhang K, Guo X, Qian L. Effects of the Degree of Deacetylation on the Single-Molecule Mechanics of Chitosans. J Phys Chem B 2023; 127:4261-4267. [PMID: 37141100 DOI: 10.1021/acs.jpcb.3c01661] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Chitosan is one of the most prevalent biomass materials, and its physicochemical and biological characteristics, such as solubility, crystallinity, flocculation ability, biodegradability, and amino-related chemical processes, are directly connected to the degree of deacetylation (DD). However, the specifics about the effects of the DD on the characteristics of chitosan are still unclear up to now. In this work, atomic force microscopy-based single-molecule force spectroscopy was used to study the role of the DD in the single-molecule mechanics of chitosan. Even though the DD varies largely (17% ≤ DD ≤ 95%), the experimental results demonstrate that the chitosans exhibit the same natural (in nonane) and backbone (in dimethyl sulfoxide (DMSO)) single-chain elasticity. This suggests that chitosans have the same intra-chain hydrogen bond (H-bond) state in nonane and to which these H-bonds can be eliminated in DMSO. However, when the experiments are carried out in ethylene glycol (EG) and water, the single-chain mechanics are increased with the increases of the DD. The energy consumed to stretch chitosans in water is larger than that in EG, indicating that amino can form a strong interaction with water and induce the formation of the binding water around the sugar rings. The strong interaction between water and amino may be the key factor for the well solubility and chemical activity of chitosan. The results of this work are anticipated to provide fresh light on the significant role played by the DD and water in the structures and functions of chitosan at the single molecular level.
Collapse
Affiliation(s)
- Miao Yu
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China
- Yibin Industrial Technology Research Institute of Sichuan University, Yibin 644000, China
| | - Kai Zhang
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China
- Yibin Industrial Technology Research Institute of Sichuan University, Yibin 644000, China
| | - Xin Guo
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China
- Yibin Industrial Technology Research Institute of Sichuan University, Yibin 644000, China
| | - Lu Qian
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
5
|
Bao Y, Cui S. Single-Chain Inherent Elasticity of Macromolecules: From Concept to Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3527-3536. [PMID: 36848243 DOI: 10.1021/acs.langmuir.2c03234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
"The Tao begets the One. One begets all things of the world." These words of wisdom from Tao Te Ching are of great inspiration to scientists in polymer materials science and engineering: The "One" means an individual polymer chain while polymer materials consist of numerous chains. The understanding of the single-chain mechanics of polymers is crucial for the bottom-up rational design of polymer materials. With a backbone and side chains, a polymer chain is more complex than a small molecule. Moreover, an individual polymer chain is usually placed in a complicated environment (such as solvent, cosolute, and solid surface), which significantly affects the behaviors of the chain. With all these factors, it is hard to fully understand the elastic behaviors of polymers. Herein, we will first introduce the concept of the single-chain inherent elasticity of polymers, which is a fundamental property determined by the polymer backbone. Then, the applications of inherent elasticity in quantifying the effects of side chains and surrounding environment will be summarized. Finally, the challenges in related fields at present and potential research directions in the future will be discussed.
Collapse
Affiliation(s)
- Yu Bao
- School of Chemistry, Key Lab of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - Shuxun Cui
- School of Chemistry, Key Lab of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
6
|
Milad Sheydaei, Edraki M, Moghaddampour IM. Poly(p-xylene trisulfide): Synthesis, Curing and Investigation of Mechanical and Thermal Properties. POLYMER SCIENCE SERIES B 2022. [DOI: 10.1134/s1560090422700245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Bao Y, Huang X, Xu D, Xu J, Jiang L, Lu ZY, Cui S. Bound water governs the single-chain property of Poly(vinyl alcohol) in aqueous environments. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Yang J, Wang Y, Qian HJ, Lu ZY, Gong Z, Liu H, Cui S. Force-induced hydrogen bonding between single polyformaldehyde chain and water. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Yang JX, Qian HJ, Gong Z, Lu ZY, Cui SX. Stretching Elasticity and Flexibility of Single Polyformaldehyde Chain. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2679-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|