1
|
Guo F, Li Y, Ma G, Zhang M, Fu J, Luo C, Yuan L, Long Y. Overview of 3D Printing Multimodal Flexible Sensors. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39565686 DOI: 10.1021/acsami.4c14219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
With the growing demand for flexible sensing systems and precision engineering, there is an increasing need for sensors that can accurately measure and analyze multimode signals. 3D printing technology has emerged as a crucial tool in the development of multimodal flexible sensors due to its advantages in design flexibility and manufacturing complex structures. This paper provides a review of recent advancements in 3D printing technology within the field of multimode flexible sensors, with particular emphasis on the relevant working mechanisms involved in decoupling complex signals. First, the research status of 3D printed multimodal flexible sensors is discussed, including their responsiveness to different modal stimuli such as mechanics, temperature, and gas. Furthermore, it explores methods for decoupling multimodal signals through structural and material design, artificial intelligence, and other technologies. Finally, this paper summarizes current challenges such as limited material selection, difficulties in miniaturization integration, and crosstalk between multisignal outputs. It also looks forward to future research directions in this area.
Collapse
Affiliation(s)
- Fawei Guo
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, People's Republic of China
- Institute of Laser Intelligent Manufacturing and Precision Processing, School of Mechanical Engineering, Guangxi University, Nanning 530004, People's Republic of China
| | - Yu Li
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, People's Republic of China
- Institute of Laser Intelligent Manufacturing and Precision Processing, School of Mechanical Engineering, Guangxi University, Nanning 530004, People's Republic of China
| | - Guangmeng Ma
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, People's Republic of China
- Institute of Laser Intelligent Manufacturing and Precision Processing, School of Mechanical Engineering, Guangxi University, Nanning 530004, People's Republic of China
| | - Mingtao Zhang
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, People's Republic of China
- Institute of Laser Intelligent Manufacturing and Precision Processing, School of Mechanical Engineering, Guangxi University, Nanning 530004, People's Republic of China
| | - Jianglin Fu
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, People's Republic of China
- Institute of Laser Intelligent Manufacturing and Precision Processing, School of Mechanical Engineering, Guangxi University, Nanning 530004, People's Republic of China
| | - Chunyi Luo
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, People's Republic of China
- Institute of Laser Intelligent Manufacturing and Precision Processing, School of Mechanical Engineering, Guangxi University, Nanning 530004, People's Republic of China
| | - Lili Yuan
- Guangxi Key Laboratory of International Join for China-ASEAN Comprehensive Transportation, Nanning University, Nanning 530000, People's Republic of China
| | - Yu Long
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, People's Republic of China
- Institute of Laser Intelligent Manufacturing and Precision Processing, School of Mechanical Engineering, Guangxi University, Nanning 530004, People's Republic of China
| |
Collapse
|
2
|
Li XD, Huang HX. Flexible and Multifunctional Pressure/Gas Sensors with Polypyrrole-Coated TPU Hierarchical Array. ACS APPLIED MATERIALS & INTERFACES 2024; 16:53072-53082. [PMID: 39312208 DOI: 10.1021/acsami.4c13516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
A promising strategy is proposed for fabricating flexible pressure/gas sensors, which have a microprotuberance and microwrinkle structure at micropillars on their sensing substrates. The sensing substrates were prepared by compression molding thermoplastic polyurethane (TPU; an industrial grade polymer) and subsequent pyrrole polymerization. Benefiting from the hierarchical structure on the sensing substrates, the flexible sensors exhibit high performances in detecting both pressure and ammonia (NH3). Mechanism for the functionalities of the hierarchical structure of the pressure sensors was analyzed. Such unique hierarchical structure endows the interlocked pressure sensor by assembling the substrates prepared at 60 min polymerization time with a relatively high sensitivity in a wider linearity range (1.15 kPa-1, 0-800 Pa), a lower detection limit of 6.2 Pa, and shorter response and recovery times (26/28 ms). The combination of stronger interfacial interaction between the TPU and polypyrrole layer, the mutual support of the interlocked micropillars, and the inherent high resilience of TPU endows the pressure sensor with lower hysteresis, good repeatability and stability, and higher durability (10,000 cycles). The interlocked pressure sensor can detect full-range human physiological activities from weak physiological signals (such as face muscle contraction, heartbeat, and breath) to body movements (such as head, elbow, and foot movement). The gas sensor assembled with the hierarchical sensing substrate prepared at 60 min polymerization time exhibits selective, stable, and faster sensing responses to NH3. The proposed facile and cost-effective preparation strategy can be an excellent candidate for fabricating high-performance and multifunctional sensors.
Collapse
Affiliation(s)
- Xiao-Dan Li
- Lab for Micro Molding and Polymer Rheology, Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, South China University of Technology, Guangzhou 510640, China
| | - Han-Xiong Huang
- Lab for Micro Molding and Polymer Rheology, Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
3
|
Zhou S, Zhao Y, Xun Y, Wei Z, Yang Y, Yan W, Ding J. Programmable and Modularized Gas Sensor Integrated by 3D Printing. Chem Rev 2024; 124:3608-3643. [PMID: 38498933 DOI: 10.1021/acs.chemrev.3c00853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
The rapid advancement of intelligent manufacturing technology has enabled electronic equipment to achieve synergistic design and programmable optimization through computer-aided engineering. Three-dimensional (3D) printing, with the unique characteristics of near-net-shape forming and mold-free fabrication, serves as an effective medium for the materialization of digital designs into usable devices. This methodology is particularly applicable to gas sensors, where performance can be collaboratively optimized by the tailored design of each internal module including composition, microstructure, and architecture. Meanwhile, diverse 3D printing technologies can realize modularized fabrication according to the application requirements. The integration of artificial intelligence software systems further facilitates the output of precise and dependable signals. Simultaneously, the self-learning capabilities of the system also promote programmable optimization for the hardware, fostering continuous improvement of gas sensors for dynamic environments. This review investigates the latest studies on 3D-printed gas sensor devices and relevant components, elucidating the technical features and advantages of different 3D printing processes. A general testing framework for the performance evaluation of customized gas sensors is proposed. Additionally, it highlights the superiority and challenges of programmable and modularized gas sensors, providing a comprehensive reference for material adjustments, structure design, and process modifications for advanced gas sensor devices.
Collapse
Affiliation(s)
- Shixiang Zhou
- Department of Materials Science and Engineering, National University of Singapore, 117575, Singapore
| | - Yijing Zhao
- Department of Mechanical Engineering, National University of Singapore, 117575, Singapore
| | - Yanran Xun
- Department of Materials Science and Engineering, National University of Singapore, 117575, Singapore
| | - Zhicheng Wei
- Department of Materials Science and Engineering, National University of Singapore, 117575, Singapore
| | - Yong Yang
- Temasek Laboratories, National University of Singapore, 5A Engineering Drive 1, 117411, Singapore
| | - Wentao Yan
- Department of Mechanical Engineering, National University of Singapore, 117575, Singapore
| | - Jun Ding
- Department of Materials Science and Engineering, National University of Singapore, 117575, Singapore
| |
Collapse
|
4
|
Jain A, Nabeel AN, Bhagwat S, Kumar R, Sharma S, Kozak D, Hunjet A, Kumar A, Singh R. Fabrication of polypyrrole gas sensor for detection of NH 3 using an oxidizing agent and pyrrole combinations: Studies and characterizations. Heliyon 2023; 9:e17611. [PMID: 37455973 PMCID: PMC10338976 DOI: 10.1016/j.heliyon.2023.e17611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 05/27/2023] [Accepted: 06/22/2023] [Indexed: 07/18/2023] Open
Abstract
The organic polymer known as Polypyrrole (Ppy) is synthesized when pyrrole monomers are polymerized. Excellent thermal stability, superior electrical conductivity, and environmental stability are all characteristics of Polypyrrole. Chemical oxidative polymerization was used to synthesize Ppy using Ferric chloride (FeCl3) as an oxidizing agent and surfactant CTAB in aqueous solution. Oxidant (FeCl3) to pyrrole varied in different molar ratios (2, 3, 4 and 5). It was found that increasing this ratio up to 4 increases PPy's conductivity. XRD, FTIR, and SEM were used to characterize Ppy. The conductive nature of Ppy was studied by I-V characteristics. The best conductive polymer is studied for the NH3 gas response.
Collapse
Affiliation(s)
- Alok Jain
- School of Physical Sciences, Lovely Professional University, Phagwara-144411, India
| | - Ansari Novman Nabeel
- Research Scholar, School of Physical Sciences, Lovely Professional University, Phagwara-144411, India
| | - Sunita Bhagwat
- Department of Physics, Abasaheb Garware College, Savitribai Phule University, Pune-411004, India
| | - Rajeev Kumar
- School of Mechanical Engineering, Lovely Professional University, Phagwara-144411, India
| | - Shubham Sharma
- Deptt. of Mechanical Engg., University Centre for Research and Development (UCRD), Chandigarh University, Mohali, India
- School of Mechanical and Automotive Engineering, Qingdao University of Technology, Qingdao, 266520, China
- Department of Manufacturing Engineering and Materials Science, Faculty of Mechanical Engineering, Opole University of Technology, Opole, Poland
| | - Drazan Kozak
- University of Slavonski Brod, Mechanical Engineering Faculty in Slavonski Brod, Trg Ivane Brlić-Mažuranić 2, HR-35000 Slavonski Brod, Croatia
| | - Anica Hunjet
- University Center Varaždin, University North 104. Brigade 3, HR-42 000 Varaždin, Croatia
| | - Abhinav Kumar
- Department of Nuclear and Renewable Energy, Ural Federal University Named After the First President of Russia, Boris Yeltsin, 19 Mira Street, 620002 Ekaterinburg, Russia
| | - Rajesh Singh
- Uttaranchal Institute of Technology, Uttaranchal University, Dehradun 248007, India
- Department of Project Management, Universidad Internacional Iberoamericana, Campeche C.P. 24560, Mexico
| |
Collapse
|
5
|
Desai SM, Sonawane RY, More AP. Thermoplastic polyurethane for three‐dimensional printing applications: A review. POLYM ADVAN TECHNOL 2023. [DOI: 10.1002/pat.6041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
6
|
Kim DH, Lee HJ, Park D, Yim JH, Choi HK. Fabrication of a nanoscale 2D PEDOT pattern via the combination of colloidal lithography and vapor phase polymerization for application in transparent, highly sensitive bending sensors. NANOSCALE 2023; 15:4620-4627. [PMID: 36776102 DOI: 10.1039/d2nr07104e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Recent advances in flexible, stretchable, and wearable electronics have necessitated the development of more diverse and complex device structures; high-resolution patterning strategies for conducting polymers are therefore urgently required to enable the fabrication of these devices. In this study, we report a nanoscale patterning strategy for conductive polymer films that utilizes a combination of vapor phase polymerization (VPP) and colloidal lithography. Here, hemispherical non-close-packed colloidal crystals are used as an effective lithographic mask for patterning oxidants on a substrate; subsequently, two-dimensional honeycomb-structured porous poly(3,4-ethylenedioxythiophene) (PEDOT) films are fabricated via VPP using the prepatterned oxidant. The resulting films closely resemble the morphology of the preceding oxidant structure; furthermore, the film porosity can be altered by adjusting the polymerization time. These patterned PEDOT films exhibit high transparency owing to the presence of voids, and high electrical sensitivity to bending stresses, which were concentrated in the narrow-patterned area. As the described fabrication methods are facile and reliable, this approach therefore provides an effective route for the fabrication of various conducting polymer frameworks in the micro- to nanoscale range.
Collapse
Affiliation(s)
- Dong Hwan Kim
- Division of Advanced Materials Engineering, Kongju National University, 1223-24Cheonan-daero, Seobuk-gu, Cheonan-si, Chungnam, 31080, South Korea.
| | - Ho Joon Lee
- Division of Advanced Materials Engineering, Kongju National University, 1223-24Cheonan-daero, Seobuk-gu, Cheonan-si, Chungnam, 31080, South Korea.
| | - Daedong Park
- Division of Advanced Materials Engineering, Kongju National University, 1223-24Cheonan-daero, Seobuk-gu, Cheonan-si, Chungnam, 31080, South Korea.
| | - Jin-Heong Yim
- Division of Advanced Materials Engineering, Kongju National University, 1223-24Cheonan-daero, Seobuk-gu, Cheonan-si, Chungnam, 31080, South Korea.
| | - Hong Kyoon Choi
- Division of Advanced Materials Engineering, Kongju National University, 1223-24Cheonan-daero, Seobuk-gu, Cheonan-si, Chungnam, 31080, South Korea.
| |
Collapse
|